Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and ...Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research.展开更多
Computational simulations of multiphase flow are challenging because many practical applications require adequate resolution of not only interfacial physics associated with moving boundaries with possible topological ...Computational simulations of multiphase flow are challenging because many practical applications require adequate resolution of not only interfacial physics associated with moving boundaries with possible topological changes,but also around three-dimensional,irregular solid geometries.In this paper,we highlight recent efforts made in simulating multiphase fluid dynamics around complex geometries,based on an Eulerian-Lagrangian framework.The approach uses two independent but related grid layouts to track the interfacial and solid boundary conditions,and is capable of capturing interfacial as well as multiphase dynamics.In particular,the stationary Cartesian grid with time dependent,local adaptive refinement is utilized to handle the computation of the transport equations,while the interface shape and movement are treated by marker-based triangulated surface meshes which freely move and interact with the Cartesian grid.The markers are also used to identify the location of solid boundaries and enforce the no-slip condition there.Issues related to the contact line treatment,topological changes of multiphase fronts during merger or breakup of objects,and necessary data structures and solution techniques are also highlighted.Selected test cases including spacecraft fuel tank flow management and liquid plug flow dynamics are presented.展开更多
Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on rel...Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51405375)National Key Basic Research and Development Program of China(973 Program,Grant No.2011CB706606)
文摘Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research.
基金The work reported in this paper has been partially supported by NASA Constellation University Institutes Program(CUIP),Claudia Meyer and Jeff Rybak programmanagersWe have benefitted from communication with Jim Grotberg and Hideki Fujioka of the University of Michigan while investigating the liquid plug flow problems。
文摘Computational simulations of multiphase flow are challenging because many practical applications require adequate resolution of not only interfacial physics associated with moving boundaries with possible topological changes,but also around three-dimensional,irregular solid geometries.In this paper,we highlight recent efforts made in simulating multiphase fluid dynamics around complex geometries,based on an Eulerian-Lagrangian framework.The approach uses two independent but related grid layouts to track the interfacial and solid boundary conditions,and is capable of capturing interfacial as well as multiphase dynamics.In particular,the stationary Cartesian grid with time dependent,local adaptive refinement is utilized to handle the computation of the transport equations,while the interface shape and movement are treated by marker-based triangulated surface meshes which freely move and interact with the Cartesian grid.The markers are also used to identify the location of solid boundaries and enforce the no-slip condition there.Issues related to the contact line treatment,topological changes of multiphase fronts during merger or breakup of objects,and necessary data structures and solution techniques are also highlighted.Selected test cases including spacecraft fuel tank flow management and liquid plug flow dynamics are presented.
基金This project is supported by National Natural Science Foundation of China (No. 60375020, No. 50305033)Provincial Natural Science Foundation of Zhejiang, China (No. Y105430).
文摘Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.