期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Novel Adaptive Binarization Method for Degraded Document Images 被引量:1
1
作者 Siti Norul Huda Sheikh Abdullah Saad M.Ismail +1 位作者 Mohammad Kamrul Hasan Palaiahnakote Shivakumara 《Computers, Materials & Continua》 SCIE EI 2021年第6期3815-3832,共18页
Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholdi... Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholding techniques that use fixed thresholds and windows,the proposed method introduces a concept for obtaining dynamic windows according to the image content to achieve better binarization.To enhance a low-contrast image,we proposed a new mean histogram stretching method for suppressing noisy pixels in the background and,simultaneously,increasing pixel contrast at edges or near edges,which results in an enhanced image.For the enhanced image,we propose a new method for deriving adaptive local thresholds for dynamic windows.The dynamic window is derived by exploiting the advantage of Otsu thresholding.To assess the performance of the proposed method,we have used standard databases,namely,document image binarization contest(DIBCO),for experimentation.The comparative study on well-known existing methods indicates that the proposed method outperforms the existing methods in terms of quality and recognition rate. 展开更多
关键词 Global and local thresholding adaptive binarization degraded document image image histogram document image binarization contest
在线阅读 下载PDF
An Effective On-line Surface Particles Inspection Instrument for Large Aperture Optical Element 被引量:4
2
作者 Wen-Dong Ding Zheng-Tao Zhang +5 位作者 Da-Peng Zhang De Xu Hai-Bing Lv Xin-Xiang Miao Guo-Rui Zhou Hao Liu 《International Journal of Automation and computing》 EI CSCD 2017年第4期420-431,共12页
Surface particles growing in large aperture optical element (LAOE) have significant impact on LAOE's stable operation. It is a challenge for the online system to inspect the particles with long working distance, en... Surface particles growing in large aperture optical element (LAOE) have significant impact on LAOE's stable operation. It is a challenge for the online system to inspect the particles with long working distance, enough precision and high efficiency because of the system constraints. In this paper, an effective and portable inspection instrument is designed based on dark-field imaging principle. A Nikon lens and an industrial high definition (HD) camera are selected to construct the vision system to inspect particles of microns size spreading over hundreds of millimeters. Using two motors and other mechanical structure, the system can realize auto-focus and image rectification functions. The line light sources are installed on both sides of the LAOE in a sealed box while the vision system is portable and working outside the box. An adaptive binarization method is proposed to process the captured dark-field image. The distribution of particles on the LAOE's surface is investigated. Because of the high resolution of the captured image, the SSE2 instructions optimization method is used to reduce the time cost of the algorithm. Experiments show that the instrument can inspect LAOE effectively and accurately. 展开更多
关键词 Dark-field imaging image rectification adaptive binarization particle inspection large aperture optical elements(LAOE).
原文传递
Vehicle Plate Number Localization Using Memetic Algorithms and Convolutional Neural Networks
3
作者 Gibrael Abosamra 《Computers, Materials & Continua》 SCIE EI 2023年第2期3539-3560,共22页
This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input ... This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input image is the most important and difficult step in the detection of VPLN,a hybrid technique is introduced that fuses the outputs of three fast techniques into a pool of connected components objects(CCO)and hence enriches the solution space with more solution candidates.Due to the combination of the outputs of the three binarization techniques,many CCOs are produced into the output pool from which one or more sequences are to be selected as candidate solutions.The pool is filtered and submitted to a new memetic algorithm to select the best fit sequence of CCOs based on an objective distance between the tested sequence and the defined geometrical relationship matrix that represents the layout of the VPLN symbols inside the concerned plate prototype.Using any of the previous versions will give moderate results but with very low speed.Hence,a new local search is added as a memetic operator to increase the fitness of the best chromosomes based on the linear arrangement of the license plate symbols.The memetic operator speeds up the convergence to the best solution and hence compensates for the overhead of the used hybrid binarization techniques and allows for real-time detection especially after using GPUs in implementing most of the used techniques.Also,a deep convolutional network is used to detect false positives to prevent fake detection of non-plate text or similar patterns.Various image samples with a wide range of scale,orientation,and illumination conditions have been experimented with to verify the effect of the new improvements.Encouraging results with 97.55%detection precision have been reported using the recent challenging public Chinese City Parking Dataset(CCPD)outperforming the author of the dataset by 3.05%and the state-of-the-art technique by 1.45%. 展开更多
关键词 Genetic algorithms memetic algorithm convolutional neural network object detection adaptive binarization filters license plate detection
在线阅读 下载PDF
Detection and threshold-adaptive segmentation of farmland residual plastic film images based on CBAM-DBNet
4
作者 Lijian Xiong Can Hu +3 位作者 Xufeng Wang Hongbiao Wang Xiuying Tang Xingwang Wang 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第5期231-238,共8页
Robust, accurate, and fast monitoring of residual plastic film (RPF) pollution in farmlands has great significance. Based on CBAM-DBNet, this study proposed a threshold-adaptive joint framework for identifying the RPF... Robust, accurate, and fast monitoring of residual plastic film (RPF) pollution in farmlands has great significance. Based on CBAM-DBNet, this study proposed a threshold-adaptive joint framework for identifying the RPF on farmland surfaces and estimating its coverage rate. UAV imaging was used to gather images of the RPF from several locations with various soil backgrounds. RPFs were manually labeled, and the degree of RPF pollution was defined based on the RPF coverage rate. Combining differentiable binarization network (DBNet) with the convolutional block attention module (CBAM), whose feature extraction module was improved. A dynamic adaptive binarization threshold formula was defined for segmenting the RPF’s approximate binary map. Regarding the RPF image detection branch, the CBAM-DBNet exhibited a precision (P) value of 85.81%, a recall (R) value of 82.69%, and an F1-score (F1) value of 84.22%, which was 1.09 percentage points higher than the DBNet in the comprehensive index F1 value. For the RPF image segmentation branch, using CBAM-DBNet to segment the RPF image combined with an adaptive binarization threshold formula. Subsequently, the mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) of the prediction of RPF’s coverage rate were 0.276, 0.366, and 0.605, respectively, outperforming the DBNet and the Iterative Threshold method. This study provides a theoretical reference for the further development of evaluation technology for RPF pollution based on UAV imaging. 展开更多
关键词 binarization threshold adaptive residual plastic film object detection image segmentation UAV remote sensing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部