When the Grover’s algorithm is applied to search an unordered database, the successful probability usually decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is pr...When the Grover’s algorithm is applied to search an unordered database, the successful probability usually decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is proposed. With application of the new phase matching, when the fraction of marked items is greater , the successful probability is equal to 1 with at most two Grover iterations. The validity of the new phase matching is verified by a search example.展开更多
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol...Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.展开更多
针对目前对Gram-Schmidt(G-S)自适应零点控制算法的研究大多只停留在理论研究阶段,还没有将其应用于低截获概率(LPI,Low Probability of Intercept)雷达设计,提出一种改进的G-S自适应零点控制算法应用于连续波(CW,Continuous Wave)体制...针对目前对Gram-Schmidt(G-S)自适应零点控制算法的研究大多只停留在理论研究阶段,还没有将其应用于低截获概率(LPI,Low Probability of Intercept)雷达设计,提出一种改进的G-S自适应零点控制算法应用于连续波(CW,Continuous Wave)体制LPI雷达。该算法可以把接收信号中的目标信息去除,只留下干扰信号,进而进行正交化处理,从而防止目标信息被当作干扰抑制掉。阵列方向图、零陷深度和误差分析等仿真结果表明:该算法在保证较快的收敛速度和较好的稳定性的基础上,相对于传统的G-S正交法有10 dB以上的零陷加深,从而验证了该算法能有效提升雷达的LPI性能。展开更多
复杂非线性系统存在强非线性和不确定性等问题,其建模与控制一直是个极具挑战的工作。自适应逆控制是一种有效的非线性系统控制方法,已经得到广泛的研究;2型模糊系统采用2型模糊集,相比于1型模糊系统,其能够提供更大的自由度,不确定性...复杂非线性系统存在强非线性和不确定性等问题,其建模与控制一直是个极具挑战的工作。自适应逆控制是一种有效的非线性系统控制方法,已经得到广泛的研究;2型模糊系统采用2型模糊集,相比于1型模糊系统,其能够提供更大的自由度,不确定性及非线性处理能力更强,能够采用较少的规则数取得较高的建模与控制精度。因此,本文将2型模糊系统理论与自适应逆控制相结合,提出了一种基于区间2型T-S模糊系统的自适应逆控制方法,实现对复杂非线性系统的有效建模与控制。首先通过离线输出输入数据映射得到非线性系统的离线2型模糊逆模型,然后将该离线区间2型模糊逆模型作为初始控制器,与被控对象串联,进行在线控制,并采用最小均方差(Least Mean Square,LMS)滤波算法在线修正2型模糊逆模型的结论参数,通过数字复制,更新逆模型控制器的参数。最后将该方法应用于两个仿真实例,结果表明本文方法控制精度高,不确定性处理能力强。展开更多
文摘When the Grover’s algorithm is applied to search an unordered database, the successful probability usually decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is proposed. With application of the new phase matching, when the fraction of marked items is greater , the successful probability is equal to 1 with at most two Grover iterations. The validity of the new phase matching is verified by a search example.
基金Natural Science Foundation of Shandong Province,China(Grant No.ZR202111230202).
文摘Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
文摘针对目前对Gram-Schmidt(G-S)自适应零点控制算法的研究大多只停留在理论研究阶段,还没有将其应用于低截获概率(LPI,Low Probability of Intercept)雷达设计,提出一种改进的G-S自适应零点控制算法应用于连续波(CW,Continuous Wave)体制LPI雷达。该算法可以把接收信号中的目标信息去除,只留下干扰信号,进而进行正交化处理,从而防止目标信息被当作干扰抑制掉。阵列方向图、零陷深度和误差分析等仿真结果表明:该算法在保证较快的收敛速度和较好的稳定性的基础上,相对于传统的G-S正交法有10 dB以上的零陷加深,从而验证了该算法能有效提升雷达的LPI性能。
文摘复杂非线性系统存在强非线性和不确定性等问题,其建模与控制一直是个极具挑战的工作。自适应逆控制是一种有效的非线性系统控制方法,已经得到广泛的研究;2型模糊系统采用2型模糊集,相比于1型模糊系统,其能够提供更大的自由度,不确定性及非线性处理能力更强,能够采用较少的规则数取得较高的建模与控制精度。因此,本文将2型模糊系统理论与自适应逆控制相结合,提出了一种基于区间2型T-S模糊系统的自适应逆控制方法,实现对复杂非线性系统的有效建模与控制。首先通过离线输出输入数据映射得到非线性系统的离线2型模糊逆模型,然后将该离线区间2型模糊逆模型作为初始控制器,与被控对象串联,进行在线控制,并采用最小均方差(Least Mean Square,LMS)滤波算法在线修正2型模糊逆模型的结论参数,通过数字复制,更新逆模型控制器的参数。最后将该方法应用于两个仿真实例,结果表明本文方法控制精度高,不确定性处理能力强。