期刊文献+
共找到385,251篇文章
< 1 2 250 >
每页显示 20 50 100
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
1
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
Evaluation of Reinforcement Learning-Based Adaptive Modulation in Shallow Sea Acoustic Communication
2
作者 Yifan Qiu Xiaoyu Yang +1 位作者 Feng Tong Dongsheng Chen 《哈尔滨工程大学学报(英文版)》 2026年第1期292-299,共8页
While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re... While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies. 展开更多
关键词 adaptive modulation Shallow sea underwater acoustic modulation Reinforcement learning
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
3
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Variable Projection Order Adaptive Filtering Algorithm for Self-interference Cancellation in Airborne Radars
4
作者 LI Haorui GAO Ying +1 位作者 GUO Xinyu OU Shifeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期497-508,共12页
The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in... The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference. 展开更多
关键词 adaptive filtering algorithm airborne radar variable projection order mean squared deviation self-interference cancellation
在线阅读 下载PDF
Adaptive Multi-Learning Cooperation Search Algorithm for Photovoltaic Model Parameter Identification
5
作者 Xu Chen Shuai Wang Kaixun He 《Computers, Materials & Continua》 2025年第10期1779-1806,共28页
Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in... Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms. 展开更多
关键词 Photovoltaic model parameter identification cooperation search algorithm adaptive multiple learning chaotic grouping reflection
在线阅读 下载PDF
Anytime algorithm based on adaptive variable-step-size mechanism for path planning of UAVs
6
作者 Hui GAO Yuhong JIA +3 位作者 Liwen XU Fengxing PAN Shaowei LI Yaoming ZHOU 《Chinese Journal of Aeronautics》 2025年第9期283-303,共21页
For autonomous Unmanned Aerial Vehicles(UAVs)flying in real-world scenarios,time for path planning is always limited,which is a challenge known as the anytime problem.Anytime planners address this by finding a collisi... For autonomous Unmanned Aerial Vehicles(UAVs)flying in real-world scenarios,time for path planning is always limited,which is a challenge known as the anytime problem.Anytime planners address this by finding a collision-free path quickly and then improving it until time runs out,making UAVs more adaptable to different mission scenarios.However,current anytime algorithms based on A^(*)have insufficient control over the suboptimality bounds of paths and tend to lose their anytime properties in environments with large concave obstacles.This paper proposes a novel anytime path planning algorithm,Anytime Radiation A^(*)(ARa A^(*)),which can generate a series of suboptimal paths with improved bounds through decreasing search step sizes and can generate the optimal path when time is sufficient.The ARa A^(*)features two main innovations:an adaptive variable-step-size mechanism and elliptic constraints based on waypoints.The former helps achieve fast path searching in various environments.The latter allows ARa A^(*)to control the suboptimality bounds of paths and further enhance search efficiency.Simulation experiments show that the ARa A^(*)outperforms Anytime Repairing A^(*)(ARA^(*))and Anytime D^(*)(AD^(*))in controlling suboptimality bounds and planning time,especially in environments with large concave obstacles.Final flight experiments demonstrate that the paths planned by ARa A^(*)can ensure the safe flight of quadrotors. 展开更多
关键词 Path planning Anytime algorithm adaptive variable-step-size Suboptimality bound Unmanned aerial vehicle(UAV)
原文传递
Effect of Tooth Geometry on Multi-cycle Meshing Temperature of POM Worm Gears:Parametric Study via an Adaptive Iteration Algorithm
7
作者 Kaixing Li Wujiao Xu +1 位作者 Yonggang Liu Datong Qin 《Chinese Journal of Mechanical Engineering》 2025年第2期427-439,共13页
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle... Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry. 展开更多
关键词 POM worm gears Multi-cycle meshing temperature adaptive iteration algorithm Tooth geometry parameters Parametric study
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
8
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
A tracking algorithm based on adaptive Kalman filter with carrier-to-noise ratio estimation under solar radio bursts interference
9
作者 ZHU Xuefen LI Ang +2 位作者 LUO Yimei LIN Mengying TU Gangyi 《Journal of Systems Engineering and Electronics》 2025年第4期880-891,共12页
Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers... Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers.In this paper,a tracking algorithm based on the adaptive Kalman filter(AKF)with carrier-to-noise ratio estimation is proposed and compared with the conventional second-order phase-locked loop tracking algo-rithms and the improved Sage-Husa adaptive Kalman filter(SHAKF)algorithm.It is discovered that when the SRBs occur,the improved SHAKF and the AKF with carrier-to-noise ratio estimation enable stable tracking to loop signals.The conven-tional second-order phase-locked loop tracking algorithms fail to track the receiver signal.The standard deviation of the carrier phase error of the AKF with carrier-to-noise ratio estimation out-performs 50.51%of the improved SHAKF algorithm,showing less fluctuation and better stability.The proposed algorithm is proven to show more excellent adaptability in the severe envi-ronment caused by the SRB occurrence and has better tracking performance. 展开更多
关键词 solar radio burst(SRB) global positioning system(GPS) adaptive Kalman filter(AKF) tracking algorithm.
在线阅读 下载PDF
Dimensional synchronous modeling-based enhanced Kriging algorithm and adaptive Copula method for multi-objective synthetical reliability analyses
10
作者 Cheng LU Yunwen FENG +1 位作者 Chengwei FEI Da TENG 《Chinese Journal of Aeronautics》 2025年第9期144-165,共22页
To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise mode... To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses. 展开更多
关键词 adaptive Copula method Aeroengine turbine bladeddisc Aircraft landing gear system Correlation of multianalytical objectives Dimensional synchronous modeling-based enhanced Kriging algorithm Reliability analyses
原文传递
An Adaptive Firefly Algorithm for Dependent Task Scheduling in IoT-Fog Computing
11
作者 Adil Yousif 《Computer Modeling in Engineering & Sciences》 2025年第3期2869-2892,共24页
The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation ... The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation and independent task scheduling aim to deliver short response time services demanded by the IoT devices and performed by fog servers.The heterogeneity of the IoT-Fog resources and the huge amount of data that needs to be processed by the IoT-Fog tasks make scheduling fog computing tasks a challenging problem.This study proposes an Adaptive Firefly Algorithm(AFA)for dependent task scheduling in IoT-Fog computing.The proposed AFA is a modified version of the standard Firefly Algorithm(FA),considering the execution times of the submitted tasks,the impact of synchronization requirements,and the communication time between dependent tasks.As IoT-Fog computing depends mainly on distributed fog node servers that receive tasks in a dynamic manner,tackling the communications and synchronization issues between dependent tasks is becoming a challenging problem.The proposed AFA aims to address the dynamic nature of IoT-Fog computing environments.The proposed AFA mechanism considers a dynamic light absorption coefficient to control the decrease in attractiveness over iterations.The proposed AFA mechanism performance was benchmarked against the standard Firefly Algorithm(FA),Puma Optimizer(PO),Genetic Algorithm(GA),and Ant Colony Optimization(ACO)through simulations under light,typical,and heavy workload scenarios.In heavy workloads,the proposed AFA mechanism obtained the shortest average execution time,968.98 ms compared to 970.96,1352.87,1247.28,and 1773.62 of FA,PO,GA,and ACO,respectively.The simulation results demonstrate the proposed AFA’s ability to rapidly converge to optimal solutions,emphasizing its adaptability and efficiency in typical and heavy workloads. 展开更多
关键词 Fog computing SCHEDULING resource management firefly algorithm genetic algorithm ant colony optimization
在线阅读 下载PDF
Optimal performance design of bat algorithm:An adaptive multi-stage structure
12
作者 Helong Yu Jiuman Song +4 位作者 Chengcheng Chen Ali Asghar Heidari Yuntao Ma Huiling Chen Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期755-814,共60页
The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally opti... The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally optimal solutions for various optimisation problems.Knowing the recent criticises of the originality of equations,the principle of BA is concise and easy to implement,and its mathematical structure can be seen as a hybrid particle swarm with simulated annealing.In this research,the authors focus on the performance optimisation of BA as a solver rather than discussing its originality issues.In terms of operation effect,BA has an acceptable convergence speed.However,due to the low proportion of time used to explore the search space,it is easy to converge prematurely and fall into the local optima.The authors propose an adaptive multi-stage bat algorithm(AMSBA).By tuning the algorithm's focus at three different stages of the search process,AMSBA can achieve a better balance between exploration and exploitation and improve its exploration ability by enhancing its performance in escaping local optima as well as maintaining a certain convergence speed.Therefore,AMSBA can achieve solutions with better quality.A convergence analysis was conducted to demonstrate the global convergence of AMSBA.The authors also perform simulation experiments on 30 benchmark functions from IEEE CEC 2017 as the objective functions and compare AMSBA with some original and improved swarm-based algorithms.The results verify the effectiveness and superiority of AMSBA.AMSBA is also compared with eight representative optimisation algorithms on 10 benchmark functions derived from IEEE CEC 2020,while this experiment is carried out on five different dimensions of the objective functions respectively.A balance and diversity analysis was performed on AMSBA to demonstrate its improvement over the original BA in terms of balance.AMSBA was also applied to the multi-threshold image segmentation of Citrus Macular disease,which is a bacterial infection that causes lesions on citrus trees.The segmentation results were analysed by comparing each comparative algorithm's peak signal-to-noise ratio,structural similarity index and feature similarity index.The results show that the proposed BA-based algorithm has apparent advantages,and it can effectively segment the disease spots from citrus leaves when the segmentation threshold is at a low level.Based on a comprehensive study,the authors think the proposed optimiser has mitigated the main drawbacks of the BA,and it can be utilised as an effective optimisation tool. 展开更多
关键词 bat-inspired algorithm Citrus Macular disease global optimization multi-threshold image segmentation Otsu algorithm
在线阅读 下载PDF
Frequency Adaptive Grid Synchronization Detection Algorithm Based on SOGI
13
作者 Jie Shao Zihao Zhang +5 位作者 Quan Xu Tiantian Cai Junye Li Baicheng Xiang Shijie Li Xianfeng Xu 《Energy Engineering》 2025年第6期2291-2307,共17页
In response to the complex working conditions of the power grid caused by the high proportion of new energy access,which leads to insufficient output accuracy of the second-order generalized integrator(SOGI)phaselocke... In response to the complex working conditions of the power grid caused by the high proportion of new energy access,which leads to insufficient output accuracy of the second-order generalized integrator(SOGI)phaselocked loop,this article proposes an improved frequency adaptive phase-locked loop structure for SOGI.Firstly,an amplitude compensation branch is introduced to compensate for the SOGI tracking fundamental frequency signal,ensuring the accuracy of the SOGI output orthogonal signal under frequency fluctuation conditions.Secondly,by cascading two adaptive SOGI modules,the suppression capability of low-order harmonics and Direct Current(DC)components has been improved.Finally,the positive and negative sequence separation method of orthogonal signals is introduced to eliminate the influence of unbalanced components on the phase-locked loop.The comparative experiment with the classic SOGI-PLL method shows that the proposed phase-locked loop structure effectively improves the accuracy of power grid synchronization detection under complex working conditions such as harmonic components,unbalanced components,and frequency fluctuations.It can complete frequency detection within 1.5 power frequency cycles,and the detected fundamental frequency positive sequence voltage has a higher sinuosity and harmonic distortion rate within 0.5%. 展开更多
关键词 Phase-locked loop second-order generalized integrator pre-filtering frequency adaptation harmonic distortion
在线阅读 下载PDF
Generalized spline adaptive filtering algorithm based on q-hyperbolic function
14
作者 Shiwei Yun Sihai Guan +1 位作者 Chuanwu Zhang Bharat Biswal 《Journal of Automation and Intelligence》 2025年第2期125-135,共11页
Based on the superiority of adaptive filtering algorithms designed with hyperbolic function-like objective functions,this paper proposes generalized spline adaptive filtering(SAF)algorithms designed with hyperbolic fu... Based on the superiority of adaptive filtering algorithms designed with hyperbolic function-like objective functions,this paper proposes generalized spline adaptive filtering(SAF)algorithms designed with hyperbolic function-like objective functions.Specifically,a series of generalized new SAF algorithms are proposed by introducing the q-deformed hyperbolic function as the cost function,named SAF-qDHSI,SAF-qDHCO,SAFqDHTA&SAF-qDHSE algorithms,respectively.Then,the proposed algorithm is theoretically demonstrated with detailed mean convergence and computational complexity analysis;secondly,the effect of different q values on the performance of the new algorithm is verified through data simulation;the new algorithm still has better performance under the interference of Gaussian noise and non-Gaussian noise even when facing the system mutation;finally,the new algorithm is verified through the measured engineering data,and the results show that the new algorithm has better convergence and robustness compared with the existing algorithm.In conclusion,the generalized algorithm based on the new cost function proposed in this paper is more effective in nonlinear system identification. 展开更多
关键词 Nonlinear systems Spline adaptive filtering q-deformed hyperbolic functions
在线阅读 下载PDF
Research on Intelligent Ship Route Planning Based on the Adaptive Step Size Informed-RRT^(*) Algorithm
15
作者 Zhaoqi Liu Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Yangwen Dan Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第4期829-839,共11页
Advancements in artificial intelligence and big data technologies have led to the gradual emergence of intelligent ships,which are expected to dominate the future of maritime transportation.Supporting the navigation o... Advancements in artificial intelligence and big data technologies have led to the gradual emergence of intelligent ships,which are expected to dominate the future of maritime transportation.Supporting the navigation of intelligent ships,route planning technologies have developed many route planning algorithms that prioritize economy and safety.This paper conducts an in-depth study of algorithm efficiency for a route planning problem,proposing an intelligent ship route planning algorithm based on the adaptive step size Informed-RRT^(*).This algorithm can quickly plan a short route according to automatic obstacle avoidance and is suitable for planning the routes of intelligent ships.Results show that the adaptive step size Informed-RRT^(*) algorithm can shorten the optimal route length by approximately 13.05%while ensuring the running time of the planning algorithm and avoiding approximately 23.64%of redundant sampling nodes.The improved algorithm effectively circumvents unnecessary calculations and reduces a large amount of redundant sampling data,thus improving the efficiency of route planning.In a complex water environment,the unique adaptive step size mechanism enables this algorithm to prevent restricted search tree expansion,showing strong search ability and robustness,which is of practical significance for the development of intelligent ships. 展开更多
关键词 Informed-RRT^(*) adaptive step size Route planning technology ROBUSTNESS Automatic obstacle avoidance
在线阅读 下载PDF
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
16
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 Wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
Optimizing Cancer Classification and Gene Discovery with an Adaptive Learning Search Algorithm for Microarray Analysis
17
作者 Chiwen Qu Heng Yao +1 位作者 Tingjiang Pan Zenghui Lu 《Journal of Bionic Engineering》 2025年第2期901-930,共30页
DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we presen... DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we present Fs-LSA (F-score based Learning Search Algorithm), a novel gene selection algorithm designed to enhance the precision and efficiency of target gene identification from microarray data for cancer classification. This algorithm is divided into two phases: the first leverages F-score values to prioritize and select feature genes with the most significant differential expression;the second phase introduces our Learning Search Algorithm (LSA), which harnesses swarm intelligence to identify the optimal subset among the remaining genes. Inspired by human social learning, LSA integrates historical data and collective intelligence for a thorough search, with a dynamic control mechanism that balances exploration and refinement, thereby enhancing the gene selection process. We conducted a rigorous validation of Fs-LSA’s performance using eight publicly available cancer microarray expression datasets. Fs-LSA achieved accuracy, precision, sensitivity, and F1-score values of 0.9932, 0.9923, 0.9962, and 0.994, respectively. Comparative analyses with state-of-the-art algorithms revealed Fs-LSA’s superior performance in terms of simplicity and efficiency. Additionally, we validated the algorithm’s efficacy independently using glioblastoma data from GEO and TCGA databases. It was significantly superior to those of the comparison algorithms. Importantly, the driver genes identified by Fs-LSA were instrumental in developing a predictive model as an independent prognostic indicator for glioblastoma, underscoring Fs-LSA’s transformative potential in genomics and personalized medicine. 展开更多
关键词 Gene selection Learning search algorithm Gene expression data CLASSIFICATION
暂未订购
A thrust estimation and control method of an adaptive cycle engine based on improved MFAC algorithm
18
作者 Xin ZHOU Wenjuan CHEN +2 位作者 Jinquan HUANG Jingtian LIU Feng LU 《Chinese Journal of Aeronautics》 2025年第5期182-201,共20页
The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To addre... The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation. 展开更多
关键词 adaptivecycle engine Direct thrust control Model-free adaptive control Sliding mode control Thrust estimation
原文传递
NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization
19
作者 Hui Lv Yuer Yang Yifeng Lin 《Computers, Materials & Continua》 2025年第10期925-953,共29页
It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional ... It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional Sparrow Search Algorithm(SSA)suffers from limited global search capability,insufficient population diversity,and slow convergence,which often leads to premature stagnation in local optima.Despite the proposal of various enhanced versions,the effective balancing of exploration and exploitation remains an unsolved challenge.To address the previously mentioned problems,this study proposes a multi-strategy collaborative improved SSA,which systematically integrates four complementary strategies:(1)the Northern Goshawk Optimization(NGO)mechanism enhances global exploration through guided prey-attacking dynamics;(2)an adaptive t-distribution mutation strategy balances the transition between exploration and exploitation via dynamic adjustment of the degrees of freedom;(3)a dual chaotic initialization method(Bernoulli and Sinusoidal maps)increases population diversity and distribution uniformity;and(4)an elite retention strategy maintains solution quality and prevents degradation during iterations.These strategies cooperate synergistically,forming a tightly coupled optimization framework that significantly improves search efficiency and robustness.Therefore,this paper names it NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization.Extensive experiments on the CEC2005 benchmark set demonstrate that NTSSA achieves theoretical optimal accuracy on unimodal functions and significantly enhances global optimum discovery for multimodal functions by 2–5 orders of magnitude.Compared with SSA,GWO,ISSA,and CSSOA,NTSSA improves solution accuracy by up to 14.3%(F8)and 99.8%(F12),while accelerating convergence by approximately 1.5–2×.The Wilcoxon rank-sum test(p<0.05)indicates that NTSSA demonstrates a statistically substantial performance advantage.Theoretical analysis demonstrates that the collaborative synergy among adaptive mutation,chaos-based diversification,and elite preservation ensures both high convergence accuracy and global stability.This work bridges a key research gap in SSA by realizing a coordinated optimization mechanism between exploration and exploitation,offering a robust and efficient solution framework for complex high-dimensional problems in intelligent computation and engineering design. 展开更多
关键词 Sparrow search algorithm multi-strategy fusion T-DISTRIBUTION elite retention strategy wilcoxon rank-sum test
在线阅读 下载PDF
Dual-Branch Gaze Estimation Algorithm with Gaussian Mixture Distribution Heatmaps and Dynamic Adaptive Loss Function
20
作者 Songyin Dai Chaoran Zhang +2 位作者 Cheng Xu Chao Yan Jie Huang 《Journal of Beijing Institute of Technology》 2025年第5期433-446,共14页
Gaze estimation,a crucial non-verbal communication cue,has achieved remarkable progress through convolutional neural networks.However,accurate gaze prediction in uncon-strained environments,particularly in extreme hea... Gaze estimation,a crucial non-verbal communication cue,has achieved remarkable progress through convolutional neural networks.However,accurate gaze prediction in uncon-strained environments,particularly in extreme head poses,partial occlusions,and abnormal lighting,remains challenging.Existing models often struggle to effectively focus on discriminative ocular features,leading to suboptimal performance.To address these limitations,this paper proposes dual-branch gaze estimation with Gaussian mixture distribution heatmaps and dynamic adaptive loss function(DMGDL),a novel dual-branch gaze estimation algorithm.By introducing Gaussian mixture distribution heatmaps centered on pupil positions as spatial attention guides,the model is enabled to prioritize ocular regions.Additionally,a dual-branch network architecture is designed to separately extract features for yaw and pitch angles,enhancing flexibility and mitigating cross-angle interference.A dynamic adaptive loss function is further formulated to address discontinuities in angle estimation,improving robustness and convergence stability.Experimental evaluations on three benchmark datasets demonstrate that DMGDL outperforms state-of-the-art methods,achiev-ing a mean angular error of 3.98°on the Max-Planck institute for informatics face gaze(MPI-IFaceGaze)dataset,10.21°on the physically unconstrained gaze estimation in the wild(Gaze360)dataset and 6.14°on the real-time eye gaze estimation in natural environments(RT-Gene)dataset,exhibiting superior generalization and robustness. 展开更多
关键词 gaze estimation Gaussian mixture distribution heatmaps dynamic adaptive loss func-tion attention mechanism dual-branch network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部