期刊文献+
共找到1,240篇文章
< 1 2 62 >
每页显示 20 50 100
Electrical/optical dual-energy-driven MXene fabric-based heater with fast response actuating and human strain sensing 被引量:3
1
作者 Yinuo Pan Han Li Zhaoqun Du 《Journal of Materials Science & Technology》 CSCD 2024年第30期57-64,共8页
Multi-functional smart textiles are receiving a lot of attention for their tremendous application devel-opment in the fields of personal thermal management,artificial muscle,electronic skin,and human-machine interacti... Multi-functional smart textiles are receiving a lot of attention for their tremendous application devel-opment in the fields of personal thermal management,artificial muscle,electronic skin,and human-machine interaction.For the complex use of many different smart textiles,designing a multifunctional textile that integrates personal thermal management,smart sensing,and flexible actuating is still a great challenge.Here,we decorated MXene on elastic fabrics by simple dip-coating and asymmetric Ecoflex encapsulation protocol to obtain electrical/optical dual-energy-driven wearable heaters with highly re-sponsive actuating and strain-sensing performance.The MXene fabric-based heaters(MFHs)have high efficiency of Joule heating(Steady state temperature of 116.7℃ at 12 V)and photothermal conversion performance(180.3℃ in 60 s under the near infrared lamp irradiation,up to 57.5℃ under 600 W m^(-2) simulated solar irradiation).Benefiting from high electrical/optical dual-energy conversion efficiency,MFH has a fast photothermal driving effect(bending angle up to 360°in 5 s)due to the different curvature of thermal expansion on both sides of the fabric.Interestingly,MFH has the capability to monitor human strain(such as muscle and joint movements).Based on the above excellent performance,we finally be-lieve that the MFHs have broad application prospects in the fields of all-weather body heat management,health monitoring,thermal health care,and thermal robotics. 展开更多
关键词 MXene Photothermal conversion Electrical/optical-dual-energy driving Strain sensor Photothermal actuator
原文传递
One Novel Hydraulic Actuating System for the Lower-Body Exoskeleton 被引量:9
2
作者 Maowen Sun Xiaoping Ouyang +2 位作者 Jouni Mattila Huayong Yang Gang Hou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期20-29,共10页
The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centraliz... The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centralized,inefficient,and bulky during application,which limits its development in the exoskeleton.For improving the robot's performance,its hydraulic actuating system should be optimized further.In this paper a novel hydraulic actuating system(HAS)based on electric-hydrostatic actuator is proposed,which is applied to hip and knee joints.Each HAS integrates an electric servo motor,a high-speed micro pump,a specific tank,and other components into a module.The specific parameters are obtained through relevant simulation according to human motion data and load requirements.The dynamic models of the HAS are built,and validated by the system identification.Experiments of trajectory tracking and human-exoskeleton interaction are carried out,which demonstrate the proposed HAS has the ability to be applied to the exoskeleton.Compared with the previous prototype,the total weight of the HAS in the robot is reduced by about 40%,and the power density is increased by almost 1.6 times. 展开更多
关键词 Hydraulic actuating system(HAS) Lower-body exoskeletons Lightweight and integrated System identification Working mode test
在线阅读 下载PDF
THEORETICAL AND EXPERIMENTAL STUDY ON THE PIEZOCERAMIC ACTUATING LAMINATE
3
作者 万建国 陶宝祺 朱纪军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第1期90-97,共8页
Piezoelectric ceramic element (PCE) is a kind of actuator applied widely on the intelligent material & structure. Establishing the relationship between the transferring stress and the controlling signal, namely t... Piezoelectric ceramic element (PCE) is a kind of actuator applied widely on the intelligent material & structure. Establishing the relationship between the transferring stress and the controlling signal, namely the transferring and actuating equation, is a key step to analyze the actuating performance of the PCE. Based on the method of the shear lag theory, the procedure of the stress transferring is analyzed and the transferring and actuating model is established in this paper. Some measurements for PCE(PZT5) actuating the Glass Fiber/Epoxy laminate have been done to verify the model established. The experimental results show that the theoretical model agrees well with the practice. Finally, the effect of the main factors on PCE actuating the laminate is studied by using the experimental and theoretical results. 展开更多
关键词 piezoelectric ceramics LAMINATES actuate transfer affecting factors
在线阅读 下载PDF
Study and Analysis of a Landing Gear Actuating Cylinder Inner-lock 被引量:1
4
作者 AO Wen-wei PEI Hua-ping CHEN Hong WU Yun-sheng 《International Journal of Plant Engineering and Management》 2011年第2期97-103,共7页
Three kinds of landing gear actuating cylinder inner-locks of an aircrafi : block ring lock, steel ball lock, finger lock are taken as the study object based on the mechanics, geometry, materials, technology etc and ... Three kinds of landing gear actuating cylinder inner-locks of an aircrafi : block ring lock, steel ball lock, finger lock are taken as the study object based on the mechanics, geometry, materials, technology etc and some aircrafi typical inner-lock practical applications. The working principle of the three typical actuating cylinder innerlocks are expounded and the stress and workmanship requirements of the three inner-lock core components are analyzed. The advantages and disadvantages of different kinds are compared and the characteristics and applications of the three inner-locks investigated. The research and analysis results provide valuable information for the actuating cylinder inner-lock of the aircraft landing gear design. 展开更多
关键词 actuating cylinder inner-lock core components workmanship requirements
在线阅读 下载PDF
Characteristic of Intelligent Air Bag Venting Structure Actuating by Electrostrictive Stack Actuator
5
作者 戈嗣诚 《Journal of Southeast University(English Edition)》 EI CAS 2002年第2期119-122,共4页
In this paper the conception of smart materials and structures is firstly combined with research of air bag,and the main theory of self adapting cushioning of intelligent air bag is expatiated.The intelligent venting... In this paper the conception of smart materials and structures is firstly combined with research of air bag,and the main theory of self adapting cushioning of intelligent air bag is expatiated.The intelligent venting structure is the main part affecting the cushioning result.Electrostrictive material was found having big force,high response speed and wide linearity,and it is fit to utilize in intelligent venting structure. The characteristic of the dynamic response and cushioning actuating of an electrostrictive stack actuator is analyzed,and the result of the computer simulation of the fuzzy control to intelligent venting structure is given.It is concluded that intelligent venting structure has good actuating characteristic and can satisfy the need of intelligent air bag. 展开更多
关键词 intelligent air bag electrostrictive stack actuator venting structure
在线阅读 下载PDF
Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process
6
作者 Siyin ZHOU Xueke CHE +1 位作者 Wansheng NIE Di WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第6期114-124,共11页
The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail.A loose coupling method was used to simulate the ... The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail.A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes.Both the discharge products and the detonation forming process assisted by the plasma were analyzed.It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters.However,the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone,and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species.Adopting a larger discharge gap results in a lower concentration of the active species,and all species have the same sensitivity to the variations of the gap.With respect to the reaction flow of the detonation tube,the corresponding deflagration to detonation transition(DDT) time and distance become slightly longer when a higher actuating voltage is chosen.The acceleration effect of plasma is more prominent with a smaller discharge gap,and the benefit builds gradually throughout the DDT process.Generally,these two control parameters have little effect on the amplitude of the flow field parameters,and they do not alter the combustion degree within the reaction zone. 展开更多
关键词 actuating voltage discharge gap dielectric barrier discharge plasma assisted detonation DDT
在线阅读 下载PDF
Effect of actuating frequency on plasma assisted detonation initiation
7
作者 周思引 车学科 +1 位作者 王迪 聂万胜 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期468-475,共8页
Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiat... Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiation process of a hydrogenoxygen mixture in a detonation tube at different actuating frequencies. Both the discharge products and the detonation forming process which is assisted by the plasma are analyzed. It is found that the patterns of the temporal and spatial distributions of discharge products in one cycle are not changed by the actuating frequency. However, the concentration of every species decreases as the actuating frequency rises, and atom O is the most sensitive to this variation, which is related to the decrease of discharge power. With respect to the reaction flow of the detonation tube, the deflagration-todetonation transition(DDT) time and distance both increase as the actuating frequency rises, but the degree of effect on DDT development during flow field evolution is erratic. Generally, the actuating frequency affects none of the amplitude value of the pressure, temperature, species concentration of the flow field, and the combustion degree within the reaction zone. 展开更多
关键词 alternating current dielectric barrier discharge plasma assisted detonation initiation actuating frequency deflagration to detonation active particles
原文传递
Bio-inspired Actuating System for Swimming Using Shape Memory Alloy Composites 被引量:2
8
作者 Minoru Taya 《International Journal of Automation and computing》 EI 2006年第4期366-373,共8页
The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (... The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (FSMA) composite and hybrid mechanism that can provide a fast response and a strong thrust. The caudal peduncle actuator was inspired by Scomber Scombrus which utilises thunniform mode swimming, which is the most efficient locomotion mode evolved in the aquatic environment, where the thrust is generated by the lift-based method, allowing high cruising speeds to be maintained for a long period of time. The morphology of an average size Scomber Scombrus (length in 310 mm) was investigated, and a 1:1 scale caudal peduncle actuator prototype was modelled and fabricated. The propulsive wave characteristics of the fish at steady speeds were employed as initial design objectives. Some key design parameters are investigated, i.e. aspect ratio (AR) (AR = 3.49), Reynolds number (Re = 429 649), reduced frequency (σ = 1.03), Strouhal number (St = 0.306) and the maximum strain of the bent tail was estimated at ε = 1.11% which is in the range of superelasticity. The experimental test of the actuator was carried out in a water tank. By applying 7 V and 2.5 A, the actuator can reach the tip-to-tip rotational angle of 85° at 4 Hz. 展开更多
关键词 Ferromagnetic shape memory alloy (FSMA) SUPERELASTICITY robotic fish hybrid mechanism ACTUATOR thunniform mode swimming Reynolds number Strouhal number
在线阅读 下载PDF
Electrostatic Actuating Bendable Flat Electrode for Micro Electrochemical Machining 被引量:1
9
作者 Ruining Huang Xiaokun Zhu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2018年第2期133-137,共5页
In micro-electrochemical machining(μECM), material dissolution takes place at very close vicinity of tool electrode due to localization of electric field. Controlling the gap between tool electrode and workpiece is t... In micro-electrochemical machining(μECM), material dissolution takes place at very close vicinity of tool electrode due to localization of electric field. Controlling the gap between tool electrode and workpiece is the key to μECM. Therefore, a new method is proposed to solve a variety of problems in small gap control. In the present context, experiments were carried out with an indigenously developed setup to fabricate cylindrical arrays. During the machining process, the flat electrode bends due to electrostatic force in pulse on-time, which self-adaptively narrows the gap between the electrode and the workpiece. The workpiece material will be removed once the gap meets the processing condition. Therefore, this method has advantages of reducing dependence on high precision machine tools and of avoiding complex servo control. The flat electrode quickly restores to its original condition when it is in pulse off-time, making the gap much larger than that in traditional electrochemical machining(ECM). The large gap benefits debris removing, which improves the machining accuracy. The influence of different experimental parameters on accuracy and efficiency during the machining process has been investigated. It is observed that with the increase in applied voltage or concentration of electrolyte, the material removal rate and the process gap both increase. The detailed analysis of the experimental results is described in this paper. 展开更多
关键词 μECM Flat electrode Electrostatic actuation Current density Gap control
在线阅读 下载PDF
Sensing-actuating integrated asymmetric multilayer hydrogel muscle for soft robotics
10
作者 Yexi Zhou Yu Zhao +4 位作者 Dazhe Zhao Xiao Guan Kaijun Zhang Yucong Pi Junwen Zhong 《Microsystems & Nanoengineering》 2025年第2期243-252,共10页
Achieving autonomously responding to external stimuli and providing real-time feedback on their motion state are key challenges in soft robotics.Herein,we propose an asymmetric three-layer hydrogel muscle with integra... Achieving autonomously responding to external stimuli and providing real-time feedback on their motion state are key challenges in soft robotics.Herein,we propose an asymmetric three-layer hydrogel muscle with integrated sensing and actuating performances.The actuating layer,made of p(NIPAm-HEMA),features an open pore structure,enabling it to achieve 58%volume shrinkage in just 8 s.The customizable heater allows for efficient programmable deformation of the actuating layer.A strain-responsive hydrogel layer,with a linear response of up to 50%strain,is designed to sense the deformation process.Leveraging these actuating and sensing capabilities,we develop an integrated hydrogel muscle that can recognize lifted objects with various weights or grasped objects of different sizes.Furthermore,we demonstrate a self-crawling robot to showcase the application potential of the hydrogel muscle for soft robots working in aquatic environments.This robot,featuring a modular distributed sensing and actuating layer,can autonomously move forward under closed-loop control based on self-detected resistance signals.The strategy of modular distributed stimuli-responsive sensing and actuating materials offers unprecedented capabilities for creating smart and multifunctional soft robotics. 展开更多
关键词 programmable deformation hydrogel muscle actuating layera customizable heater external stimuli soft roboticshereinwe actuating layermade soft robotics
原文传递
Method for Decreasing the Peak Actuating Force and Parasitic Displacements of 4-4R Compliant Parallel Pointing Mechanism through Redundant-actuation
11
作者 Jun Ren Yikang Shu Shusheng Bi 《Chinese Journal of Mechanical Engineering》 2025年第4期300-315,共16页
Reducing the peak actuating force(PAF)and parasitic displacement is of high significance for improving the performance of compliant parallel mechanisms(CPMs).In this study,a 2-DOF 4-4R compliant parallel pointing mech... Reducing the peak actuating force(PAF)and parasitic displacement is of high significance for improving the performance of compliant parallel mechanisms(CPMs).In this study,a 2-DOF 4-4R compliant parallel pointing mechanism(4-4R CPPM)was used as the object,and the actuating force of the mechanism was optimized through redundant actuation.This was aimed at minimizing the PAF and parasitic displacement.First,a kinetostatic model of the redundantly actuated 4-4R CPPM was established to reveal the relationship between the input forces/displacements and the output displacements of the mobile platform.Subsequently,based on the established kinetostatic model,methods for optimizing the actuating force distribution with the aim of minimizing the PAF and parasitic displacement were introduced successively.Second,a simulated example of a mobile platform’s spatial pointing trajectory validated the accuracy of the kinetostatic model.The results show a less than 0.9%relative error between the analytical and finite element(FE)results,and the high consistency indicates the accuracy of the kinetostatic model.Then,the effectiveness of the method in minimizing the PAF and parasitic displacement was validated using two simulated examples.The results indicate that compared with the non-redundant actuation case,the PAF of the mechanism could be reduced by up to 50%,and the parasitic displacement was reduced by approximately three-four orders of magnitude by means of redundant actuation combined with the optimal distribution of the actuating force.As expected,with the reduction in parasitic displacement,the FE-results of the output angular displacements(θ_(x) andθ_(z))of the mobile platform were closer to the target oscillation trajectory.This further verified that the reduction in parasitic displacement is indeed effective in improving the motion accuracy of the mechanism.The advantage of this proposed method is that it reduces the PAF and parasitic displacement from the perspective of the actuating force control strategy,without the requirement of structural changes to the original mechanism. 展开更多
关键词 Compliant parallel mechanism(CPM) Compliance matrix method Kinetostatic Redundant-actuation Parasitic displacement Peak actuating force(PAF)
在线阅读 下载PDF
Ant-nest-inspired porous structure for MXene composites with high-performance energy-storage and actuating multifunctions
12
作者 Yi Wang Guanfeng Xue +2 位作者 Zhiling Luo Wei Zhang Luzhuo Chen 《Nano Research》 SCIE EI CSCD 2024年第7期6673-6685,共13页
Integrating energy-storage devices(supercapacitors)and shape-deformation devices(actuators)advances the miniaturization and multifunctional development of soft robots.However,soft robots necessitate supercapacitors wi... Integrating energy-storage devices(supercapacitors)and shape-deformation devices(actuators)advances the miniaturization and multifunctional development of soft robots.However,soft robots necessitate supercapacitors with high energy-storage performance and actuators with excellent actuation capability.Here,inspired by ant nests,we present a porous structure fabricated by MXene-graphene-methylcellulose(M-GMC)composite,which overcomes the self-stacking of MXene nanosheets and offers a larger specific surface area.The porous structure provides more channels and active sites for electrolyte ions,resulting in high energy storage performance.The areal capacitance of the M-GMC electrode reaches up to 787.9 mF·cm^(−2),significantly superior to that of the pristine MXene electrode(449.1 mF·cm^(−2)).Moreover,the M-GMC/polyethylene bilayer composites with energy storage and multi-responsive actuation functions are developed.The M-GMC is used as the electrode and the polyethylene is used as the encapsulation layer of the quasi-solid-state supercapacitor.Meanwhile,the actuators fabricated by the bilayer composites can be driven by light or low voltage(≤9 V).The maximum bending curvature is up to 5.11 cm^(−1).Finally,a smart gripper and a fully encapsulated smart integrated circuit based on the M-GMC/polyethylene are designed.The smart gripper enables programmable control with multi-stage deformations.The applications realize the intelligence and miniaturization of soft robots.The ant-nest-inspired M-GMC composites would provide a promising development strategy for soft robots and smart integrated devices. 展开更多
关键词 MXene graphene ant nest SUPERCAPACITOR ACTUATOR multi-functional
原文传递
Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation
13
作者 Shuai Liang Wen-Jing Jiang Ji-Xiang Hu 《Chinese Journal of Structural Chemistry》 2025年第2期5-6,共2页
Transducing thermal energy into mechanical movements via molecular reconfigurations offers a cutting-edge approach to thermal actuating materials,which could be applied to sensors,energy harvesting and storage devices... Transducing thermal energy into mechanical movements via molecular reconfigurations offers a cutting-edge approach to thermal actuating materials,which could be applied to sensors,energy harvesting and storage devices[1].Thermal expansion is a pivotal aspect in solid state chemistry,intricately intertwined with various factors such as crystal structure,chemical composition,electronic configuration,microstructure,and defects.Most materials undergo isotropic and positive thermal expansion(PTE)because of the disharmonic vibrational amplitudes of their chemical bonds.Moreover,anisotropic thermal expansion(ATE)and negative thermal expansion(NTE)are fascinating physical attributes of solids,which can originate from electronic or magnetic mechanisms,as well as through a transverse phonon mechanism in insulating lattice solids. 展开更多
关键词 transducing thermal energy Thermal actuating materials Spin crossover Rhombus deformation isotropic positive thermal expansion pte solid state chemistryintricately molecular reconfigurations crystal structurechemical
原文传递
Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities 被引量:3
14
作者 Neng Chen Yang Zhou +10 位作者 Yinping Liu Yuanyuan Mi Sisi Zhao Wang Yang Sai Che Hongchen liu FengJiang Chen Chong Xu Guang Ma Xue Peng Yongfeng Li 《Nano Research》 SCIE EI CSCD 2022年第8期7703-7712,共10页
Despite enormous efforts in actuators,most researches are only limited to various actuation behaviors and demonstrations of soft materials.It has not yet been reported to capture and monitor its movement status in an ... Despite enormous efforts in actuators,most researches are only limited to various actuation behaviors and demonstrations of soft materials.It has not yet been reported to capture and monitor its movement status in an invisible environment.Therefore,it is of great significance to develop a self-sensing and self-actuating dual-function hydrogel actuator system to realize real-time monitoring.Here,we report a bifunctional hydrogel system with self-actuating and self-monitoring abilities,which combines the functions of photothermal actuation and electrical resistance sensing into a single material.The bilayer tough conductive hydrogel synthesized by unconventional complementary concentration recombination and cryogenic freezing technique presents a dense conductive network and high-porosity structure,achieving high toughness at 190.3 kPa of tensile strength,high stretchability(164.3%strain),and the toughness dramatically(1,471.4 kJ·m^(−3)).The working mechanism of the monitoring and self-sensing system is accomplished through the integrated monitoring device of surface temperature–bending angle–electron current,to solve the problem of not apperceiving actuator motion state when encountering obstacles in an invisible environment.We demonstrated for the first time a photothermal actuator’s motion of a football player and goalkeeper to finish the penalty and a soft actuator hand,which can achieve the action of sticking to grab and release under photo-thermal actuation.When connected to the control closed circuit,the actuator realized closed-loop monitoring and sensing feedback.The development of bifunctional hydrogel systems may bring new opportunities and ideas in the fields of material science,circuit technology,sensors,and mechanical engineering. 展开更多
关键词 photo-thermal hydrogel actuator graphene nanosheets SELF-MONITORING self-actuating surface temperature-bending angle-electron current
原文传递
Structural Topology Design for Electromagnetic Performance Enhancement of Permanent-Magnet Machines 被引量:2
15
作者 Pengjie Xiang Liang Yan +3 位作者 Xiaoshuai Liu Xinghua He Nannan Du Han Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期411-432,共22页
Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and el... Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and electric traction systems.The PM machines are usually expected to have high torque/power density,low torque ripple,reduced rotor mass,a large constant power speed range or strong anti-magnetization capability to match different requirements of industrial applications.The structural topology of the electric machines,including stator/rotor arrangements and magnet patterns of rotor,is one major concern to improve their electromagnetic performance.However,systematic reviews of structural topology are seldom found in literature.Therefore,the objective of this paper is to summarize the stator/rotor arrangements and magnet patterns of the permanent-magnet brushless machines,in depth.Specifically,the stator/rotor arrangements of the PM machines including radial-flux,axialflux and emerging hybrid axial-radial flux configurations are presented,and pros and cons of these topologies are discussed regarding their electromagnetic performance.The magnet patterns including various surface-mounted and interior magnet patterns,such as parallel magnetization pole pattern,Halbach arrays,spoke-type designs and their variants are summarized,and the characteristics of those magnet patterns in terms of flux-focusing effect,magnetic self-shielding effect,torque ripple,reluctance torque,magnet utilization ratio,and anti-demagnetization capability are compared.This paper can provide guidance and suggestion for the structure selection and design of PM brushless machines for high-performance industrial applications. 展开更多
关键词 Actuators Robot joint Electric-vehicle motor Permanent-magnet machines Axial-flux PM machine Dualrotor machine Magnet patterns Torque density Torque ripple Power density
在线阅读 下载PDF
Actuator fault diagnosis and severity identification of turbofan engines for steady-state and dynamic conditions 被引量:1
16
作者 Yuzhi CHEN Weigang ZHANG +4 位作者 Zhiwen ZHAO Elias TSOUTSANIS Areti MALKOGIANNI Yanhua MA Linfeng GOU 《Chinese Journal of Aeronautics》 2025年第1期427-443,共17页
Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from b... Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines. 展开更多
关键词 Turbofan engines Actuators Real time systems Fault identification Steady-state conditions Dynamic conditions
原文传递
Cumulative thermal coupling modeling and analysisof oil-immersed motor-pump assembly forelectro–hydrostatic actuator 被引量:1
17
作者 Siming FAN Shaoping WANG +3 位作者 Qiyang WANG Xingjian WANG Di LIU Xiao WU 《Chinese Journal of Aeronautics》 2025年第5期394-410,共17页
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ... The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety. 展开更多
关键词 Electro-hydrostatic actuator Oil-immersed motor-pump Dynamic thermal coupling model Heat transfer Heat accumulation
原文传递
Magnetically-actuated intracorporeal biopsy robot based on Kresling Origami 被引量:1
18
作者 Long Huang Tingcong Xie Lairong Yin 《Theoretical & Applied Mechanics Letters》 2025年第1期49-56,共8页
The introduction of wireless capsule endoscopy has brought a revolutionary change in the diagnostic procedures for gastrointestinal disorders.Biopsy,an essential procedure for disease diagnosis,has been integrated int... The introduction of wireless capsule endoscopy has brought a revolutionary change in the diagnostic procedures for gastrointestinal disorders.Biopsy,an essential procedure for disease diagnosis,has been integrated into robotic capsule endoscopy to augment diagnostic capabilities.In this study,we propose a magnetically driven biopsy robot based on a Kresling origami.Considering the bistable properties of Krelsing origami and the elasticity of the creases,a foldable structure of the robot with constant force characteristics is designed.The folding motion of the structure is used to deploy the needle into the target tissue.The robot is capable of performing rolling motion under the control of an external magnetic drive system,and a fine needle biopsy technique is used to collect deep tissue samples.We also conduct in vitro rolling experiments and sampling experiments on apple tissues and pork tissues,which verify the performance of the robot. 展开更多
关键词 Kresling origami Fine needle biopsy Magnetic actuation Constant force characteristics
在线阅读 下载PDF
Advanced vat photopolymerization 3D printing of silicone rubber with high precision and superior stability 被引量:1
19
作者 Zhongying Ji Bingang Xu +5 位作者 Zhiyong Su Xiaochen Wang Yang Lyu Sen Liu Tao Wu Xiaolong Wang 《International Journal of Extreme Manufacturing》 2025年第2期630-639,共10页
Silicone rubber(SR)is a versatile material widely used across various advanced functional applications,such as soft actuators and robots,flexible electronics,and medical devices.However,most SR molding methods rely on... Silicone rubber(SR)is a versatile material widely used across various advanced functional applications,such as soft actuators and robots,flexible electronics,and medical devices.However,most SR molding methods rely on traditional thermal processing or direct ink writing three-dimensional(3D)printing.These methods are not conducive to manufacturing complex structures and present challenges such as time inefficiency,poor accuracy,and the necessity of multiple steps,significantly limiting SR applications.In this study,we developed an SR-based ink suitable for vat photopolymerization 3D printing using a multi-thiol monomer.This ink enables the one-step fabrication of complex architectures with high printing resolution at the micrometer scale,providing excellent mechanical strength and superior chemical stability.Specifically,the optimized 3D printing SR-20 exhibits a tensile stress of 1.96 MPa,an elongation at break of 487.9%,and an elastic modulus of 225.4 kPa.Additionally,the 3D-printed SR samples can withstand various solvents(acetone,toluene,and tetrahydrofuran)and endure temperatures ranging from-50℃ to 180℃,demonstrating superior stability.As a emonstration of the application,we successfully fabricated a series of SR-based soft pneumatic actuators and grippers in a single step with this technology,allowing for free assembly for the first time.This ultraviolet-curable SR,with high printing resolution and exceptional stability performance,has significant potential to enhance the capabilities of 3D printing for applications in soft actuators,robotics,flexible electronics,and medical devices. 展开更多
关键词 3D printing silicone rubber high printing resolution pneumatic actuator
在线阅读 下载PDF
Fabrication and Mechano-sensing Characteristics of Bending Polypyrrole Actuator
20
作者 CHEN Jinyou HU Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期240-245,共6页
To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical character... To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper. 展开更多
关键词 conductive polymer POLYPYRROLE mechanical characteristics actuators sensing characteristics
原文传递
上一页 1 2 62 下一页 到第
使用帮助 返回顶部