期刊文献+
共找到280,444篇文章
< 1 2 250 >
每页显示 20 50 100
Mixture of Experts Framework Based on Soft Actor-Critic Algorithm for Highway Decision-Making of Connected and Automated Vehicles
1
作者 Fuxing Yao Chao Sun +2 位作者 Bing Lu Bo Wang Haiyang Yu 《Chinese Journal of Mechanical Engineering》 2025年第1期382-395,共14页
Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements... Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability. 展开更多
关键词 DECISION-MAKING Soft actor-critic Connected and automated vehicles
在线阅读 下载PDF
面向长序列自主作业的非对称Actor-Critic强化学习方法
2
作者 任君凯 瞿宇珂 +3 位作者 罗嘉威 倪子淇 卢惠民 叶益聪 《国防科技大学学报》 北大核心 2025年第4期111-122,共12页
长序列自主作业能力已成为制约智能机器人走向实际应用的问题之一。针对机器人在复杂场景中面临的多样化长序列操作技能需求,提出了一种高效鲁棒的非对称Actor-Critic强化学习方法,旨在解决长序列任务学习难度大与奖励函数设计复杂的挑... 长序列自主作业能力已成为制约智能机器人走向实际应用的问题之一。针对机器人在复杂场景中面临的多样化长序列操作技能需求,提出了一种高效鲁棒的非对称Actor-Critic强化学习方法,旨在解决长序列任务学习难度大与奖励函数设计复杂的挑战。通过整合多个Critic网络协同训练单一Actor网络,并引入生成对抗模仿学习为Critic网络生成内在奖励,从而降低长序列任务学习难度。在此基础上,设计两阶段学习方法,利用模仿学习为强化学习提供高质量预训练行为策略,在进一步提高学习效率的同时,增强策略的泛化性能。面向化学实验室长序列自主作业的仿真结果表明,该方法显著提高了机器人长序列操作技能的学习效率与行为策略的鲁棒性。 展开更多
关键词 自主作业机器人 强化学习 actor-critic 长序列操作
在线阅读 下载PDF
基于Actor-Critic算法的新能源汽车实时充电优化调度研究
3
作者 赖城贤 杨婷 苏庆列 《黑龙江工业学院学报(综合版)》 2025年第5期128-133,共6页
随着新能源汽车的普及,其充电调度问题日益凸显。研究旨在通过优化充电调度算法,实现新能源汽车充电的实时优化,以提升充电效率和降低成本。研究采用了分两步执行的Actor-Critic充电调度算法,利用多层感知器构建Actor和Critic网络,并通... 随着新能源汽车的普及,其充电调度问题日益凸显。研究旨在通过优化充电调度算法,实现新能源汽车充电的实时优化,以提升充电效率和降低成本。研究采用了分两步执行的Actor-Critic充电调度算法,利用多层感知器构建Actor和Critic网络,并通过并行计算提高算法效率。研究结果显示,该算法在精准率上迅速上升,在约200次迭代后达到0.9,显著优于其他算法。在运行时间方面,该算法始终保持较低水平,显示出高运行效率。在充电负载管理上,该算法在50小时内达到约45kW的负载,充电效率接近90%,且充电成本在所有车辆数量下均为最低。该算法在新能源汽车充电调度中表现出色,不仅提高了充电效率,降低了充电成本,而且具有较快的收敛速度和较低的运行时间,为新能源汽车充电调度提供了一种有效的解决方案。 展开更多
关键词 actor-critic算法 新能源汽车 实时充电 优化调度 状态空间
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
4
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Numbering and Generating Quantum Algorithms
5
作者 Mohamed A. El-Dosuky 《Journal of Computer and Communications》 2025年第2期126-141,共16页
Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct ap... Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms. 展开更多
关键词 Quantum algorithms Numbering Computable Programs Quantum Key Distribution
在线阅读 下载PDF
Comparative analysis of GA and PSO algorithms for optimal cost management in on-grid microgrid energy systems with PV-battery integration
6
作者 Mouna EL-Qasery Ahmed Abbou +2 位作者 Mohamed Laamim Lahoucine Id-Khajine Abdelilah Rochd 《Global Energy Interconnection》 2025年第4期572-580,共9页
The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is crit... The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms. 展开更多
关键词 MICROGRID EMS GA algorithm PSO algorithm Cost optimization Economic dispatch
在线阅读 下载PDF
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
7
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
Hybrid Framework for Structural Analysis: Integrating Topology Optimization, Adjacent Element Temperature-Driven Pre-Stress, and Greedy Algorithms
8
作者 Ibrahim T.Teke Ahmet H.Ertas 《Computers, Materials & Continua》 2025年第7期243-264,共22页
This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injecti... This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injection-molded parts.At its core,the framework employs a greedy algorithm that generates runner systems based on adjacency and shortest path principles,leading to improvements in both mechanical strength and material efficiency.The design optimization is validated through a series of rigorous experimental tests,including three-point bending and torsion tests performed on key-socket frames,ensuring that the optimized designs meet practical performance requirements.A critical innovation of the framework is the development of the Adjacent Element Temperature-Driven Prestress Algorithm(AETDPA),which refines the prediction of mechanical failure and strength fitting.This algorithm has been shown to deliver mesh-independent accuracy,thereby enhancing the reliability of simulation results across various design iterations.The framework’s adaptability is further demonstrated by its ability to adjust optimization methods based on the unique geometry of each part,thus accelerating the overall design process while ensuring struc-tural integrity.In addition to its immediate applications in injection molding,the study explores the potential extension of this framework to metal additive manufacturing,opening new avenues for its use in advanced manufacturing technologies.Numerical simulations,including finite element analysis,support the experimental findings and confirm that the optimized designs provide a balanced combination of strength,durability,and efficiency.Furthermore,the integration challenges with existing injection molding practices are addressed,underscoring the framework’s scalability and industrial relevance.Overall,this hybrid topology optimization framework offers a computationally efficient and robust solution for advanced manufacturing applications,promising significant improvements in design efficiency,cost-effectiveness,and product performance.Future work will focus on further enhancing algorithm robustness and exploring additional applications across diverse manufacturing processes. 展开更多
关键词 Plastic injection molding 3D printing three-point bending tensile test adjacent element temperature-driven pre-stress algorithm D-S-ER S-D-S-ER thermal expansion greedy algorithm
在线阅读 下载PDF
Boosting algorithms for predicting end-point temperature in BOF steelmaking using big industrial datasets
9
作者 Jian-bo Zhang Maryam Khaksar Ghalati +3 位作者 Jun Fu Xiao-an Yang G.M.A.M.El-Fallah Hong-biao Dong 《Journal of Iron and Steel Research International》 2025年第7期1856-1868,共13页
The application of machine learning was investigated for predicting end-point temperature in the basic oxygen furnace steelmaking process,addressing gaps in the field,particularly large-scale dataset sizes and the und... The application of machine learning was investigated for predicting end-point temperature in the basic oxygen furnace steelmaking process,addressing gaps in the field,particularly large-scale dataset sizes and the underutilization of boosting algorithms.Utilizing a substantial dataset containing over 20,000 heats,significantly bigger than those in previous studies,a comprehensive evaluation of five advanced machine learning models was conducted.These include four ensemble learning algorithms:XGBoost,LightGBM,CatBoost(three boosting algorithms),along with random forest(a bagging algorithm),as well as a neural network model,namely the multilayer perceptron.Our comparative analysis reveals that Bayesian-optimized boosting models demonstrate exceptional robustness and accuracy,achieving the highest R-squared values,the lowest root mean square error,and lowest mean absolute error,along with the best hit ratio.CatBoost exhibited superior performance,with its test R-squared improving by 4.2%compared to that of the random forest and by 0.8%compared to that of the multilayer perceptron.This highlights the efficacy of boosting algorithms in refining complex industrial processes.Additionally,our investigation into the impact of varying dataset sizes,ranging from 500 to 20,000 heats,on model accuracy underscores the importance of leveraging larger-scale datasets to improve the accuracy and stability of predictive models. 展开更多
关键词 STEELMAKING Basic oxygen furnace Machine learning-Boosting algorithm
原文传递
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
10
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 Wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
Many-objective evolutionary algorithms based on reference-point-selection strategy for application in reactor radiation-shielding design
11
作者 Cheng-Wei Liu Ai-Kou Sun +4 位作者 Ji-Chong Lei Hong-Yu Qu Chao Yang Tao Yu Zhen-Ping Chen 《Nuclear Science and Techniques》 2025年第6期201-215,共15页
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct... In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types. 展开更多
关键词 Many-objective optimization problem Evolutionary algorithm Radiation-shielding design Reference-point-selection strategy
在线阅读 下载PDF
Web Visualization Application of Large Mesh Models Based on Simplification Algorithms
12
作者 Shengtai Shi 《Journal of Electronic Research and Application》 2025年第2期197-203,共7页
This paper studies polygon simplification algorithms for 3D models,focuses on the optimization algorithm of quadratic error metric(QEM),explores the impacts of different methods on the simplification of different mode... This paper studies polygon simplification algorithms for 3D models,focuses on the optimization algorithm of quadratic error metric(QEM),explores the impacts of different methods on the simplification of different models,and develops a web-based visualization application.Metrics such as the Hausdorff distance are used to evaluate the balance between the degree of simplification and the retention of model details. 展开更多
关键词 QEM algorithm Mesh simplification WebGL rendering Java web development
在线阅读 下载PDF
A Comparison among Different Machine Learning Algorithms in Land Cover Classification Based on the Google Earth Engine Platform: The Case Study of Hung Yen Province, Vietnam
13
作者 Le Thi Lan Tran Quoc Vinh Phạm Quy Giang 《Journal of Environmental & Earth Sciences》 2025年第1期132-139,共8页
Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status ... Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status of land covers in Hung Yen province of Vietnam using Landsat 8 OLI satellite images,a free data source with reasonable spatial and temporal resolution.The results of the study show that all three algorithms presented good classification for five basic types of land cover including Rice land,Water bodies,Perennial vegetation,Annual vegetation,Built-up areas as their overall accuracy and Kappa coefficient were greater than 80%and 0.8,respectively.Among the three algorithms,SVM achieved the highest accuracy as its overall accuracy was 86%and the Kappa coefficient was 0.88.Land cover classification based on the SVM algorithm shows that Built-up areas cover the largest area with nearly 31,495 ha,accounting for more than 33.8%of the total natural area,followed by Rice land and Perennial vegetation which cover an area of over 30,767 ha(33%)and 15,637 ha(16.8%),respectively.Water bodies and Annual vegetation cover the smallest areas with 8,820(9.5%)ha and 6,302 ha(6.8%),respectively.The results of this study can be used for land use management and planning as well as other natural resource and environmental management purposes in the province. 展开更多
关键词 Google Earth Engine Land Cover LANDSAT Machine Learning algorithm
在线阅读 下载PDF
Neuromorphic devices assisted by machine learning algorithms
14
作者 Ziwei Huo Qijun Sun +4 位作者 Jinran Yu Yichen Wei Yifei Wang Jeong Ho Cho Zhong Lin Wang 《International Journal of Extreme Manufacturing》 2025年第4期178-215,共38页
Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decisio... Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decision making.It features parallel interconnected neural networks,high fault tolerance,robustness,autonomous learning capability,and ultralow energy dissipation.The algorithms of artificial neural network(ANN)have also been widely used because of their facile self-organization and self-learning capabilities,which mimic those of the human brain.To some extent,ANN reflects several basic functions of the human brain and can be efficiently integrated into neuromorphic devices to perform neuromorphic computations.This review highlights recent advances in neuromorphic devices assisted by machine learning algorithms.First,the basic structure of simple neuron models inspired by biological neurons and the information processing in simple neural networks are particularly discussed.Second,the fabrication and research progress of neuromorphic devices are presented regarding to materials and structures.Furthermore,the fabrication of neuromorphic devices,including stand-alone neuromorphic devices,neuromorphic device arrays,and integrated neuromorphic systems,is discussed and demonstrated with reference to some respective studies.The applications of neuromorphic devices assisted by machine learning algorithms in different fields are categorized and investigated.Finally,perspectives,suggestions,and potential solutions to the current challenges of neuromorphic devices are provided. 展开更多
关键词 neuromorphic devices machine learning algorithms artificial synapses MEMRISTORS field-effect transistors
在线阅读 下载PDF
Reaction process optimization based on interpretable machine learning and metaheuristic optimization algorithms
15
作者 Dian Zhang Bo Ouyang Zheng-Hong Luo 《Chinese Journal of Chemical Engineering》 2025年第8期77-85,共9页
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u... The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes. 展开更多
关键词 Reaction process optimization Interpretable machine learning Metaheuristic optimization algorithm BIODIESEL
在线阅读 下载PDF
Guidance of development,validation,and evaluation of algorithms for populating health status in observational studies of routinely collected data(DEVELOP-RCD)
16
作者 Wen Wang Ying-Hui Jin +8 位作者 Mei Liu Qiao He Jia-Yue Xu Ming-Qi Wang Guo-Wei Li Bo Fu Si-Yu Yan Kang Zou Xin Sun 《Military Medical Research》 2025年第5期788-798,共11页
Background:In recent years,there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data(RCD).These studies rely on algorithms to identify specific hea... Background:In recent years,there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data(RCD).These studies rely on algorithms to identify specific health conditions(e.g.,diabetes or sepsis)for statistical analyses.However,there has been substantial variation in the algorithm development and validation,leading to frequently suboptimal performance and posing a significant threat to the validity of study findings.Unfortunately,these issues are often overlooked.Methods:We systematically developed guidance for the development,validation,and evaluation of algorithms designed to identify health status(DEVELOP-RCD).Our initial efforts involved conducting both a narrative review and a systematic review of published studies on the concepts and methodological issues related to algorithm development,validation,and evaluation.Subsequently,we conducted an empirical study on an algorithm for identifying sepsis.Based on these findings,we formulated specific workflow and recommendations for algorithm development,validation,and evaluation within the guidance.Finally,the guidance underwent independent review by a panel of 20 external experts who then convened a consensus meeting to finalize it.Results:A standardized workflow for algorithm development,validation,and evaluation was established.Guided by specific health status considerations,the workflow comprises four integrated steps:assessing an existing algorithm’s suitability for the target health status;developing a new algorithm using recommended methods;validating the algorithm using prescribed performance measures;and evaluating the impact of the algorithm on study results.Additionally,13 good practice recommendations were formulated with detailed explanations.Furthermore,a practical study on sepsis identification was included to demonstrate the application of this guidance.Conclusions:The establishment of guidance is intended to aid researchers and clinicians in the appropriate and accurate development and application of algorithms for identifying health status from RCD.This guidance has the potential to enhance the credibility of findings from observational studies involving RCD. 展开更多
关键词 Routinely collected healthcare data(RCD) algorithms Health status GUIDANCE
原文传递
Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic Search Challenge Algorithms
17
作者 Mohamad Khairulamirin Md Razali MasriAyob +5 位作者 Abdul Hadi Abd Rahman Razman Jarmin Chian Yong Liu Muhammad Maaya Azarinah Izaham Graham Kendall 《Computer Modeling in Engineering & Sciences》 2025年第2期1233-1288,共56页
The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamic... The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains. 展开更多
关键词 HYPER-HEURISTICS search algorithms optimization heuristic selection move acceptance learning DIVERSIFICATION parameter control
在线阅读 下载PDF
An Analysis of the Bidirectional Shaping Mechanism Between Short-Video Algorithms and Film Narrative Driven by the Attention Economy
18
作者 Zhaoyang Dong Shibo Zhang 《Proceedings of Business and Economic Studies》 2025年第5期32-38,共7页
This study examines the bidirectional shaping mechanism between short-video algorithms and film narratives within the attention economy.It investigates how algorithmic logic influences cinematic storytelling and how f... This study examines the bidirectional shaping mechanism between short-video algorithms and film narratives within the attention economy.It investigates how algorithmic logic influences cinematic storytelling and how films,in turn,contribute to the aesthetic enhancement of short-video content.Drawing on Communication Accommodation Theory and Berry’s Acculturation Theory,along with case analyses and industry data,this research demonstrates that algorithms push films toward high-stimulus,fast-paced narrative patterns—characterized by increased shot density and structural fragmentation—to capture and retain viewer attention.Conversely,films counter this influence by supplying narratively deep and artistically refined content that elevates short-video aesthetics and encourages critical audience engagement.This dynamic reflects a process of mutual adaptation rather than one-sided dominance.The study concludes that such interaction signifies a broader restructuring of cultural production logic,facilitating cross-media convergence while simultaneously posing risks to cultural diversity due to the prioritization of high-traffic content.Balancing this relationship will require policy support,algorithmic transparency,and strengthened industry self-regulation to preserve artistic integrity and cultural ecosystem diversity. 展开更多
关键词 Short-video algorithm Film narrative Bidirectional shaping Cultural production logic Attention economy
在线阅读 下载PDF
Bio-Inspired Algorithms in NLP Techniques:Challenges,Limitations and Its Applications
19
作者 Huu-Tuong Ho Thi-Thuy-Hoai Nguyen +1 位作者 Duong Nguyen Minh Huy Luong Vuong Nguyen 《Computers, Materials & Continua》 2025年第6期3945-3973,共29页
Natural Language Processing(NLP)has become essential in text classification,sentiment analysis,machine translation,and speech recognition applications.As these tasks become complex,traditionalmachine learning and deep... Natural Language Processing(NLP)has become essential in text classification,sentiment analysis,machine translation,and speech recognition applications.As these tasks become complex,traditionalmachine learning and deep learning models encounter challenges with optimization,parameter tuning,and handling large-scale,highdimensional data.Bio-inspired algorithms,which mimic natural processes,offer robust optimization capabilities that can enhance NLP performance by improving feature selection,optimizing model parameters,and integrating adaptive learning mechanisms.This review explores the state-of-the-art applications of bio-inspired algorithms—such as Genetic Algorithms(GA),Particle Swarm Optimization(PSO),and Ant Colony Optimization(ACO)—across core NLP tasks.We analyze their comparative advantages,discuss their integration with neural network models,and address computational and scalability limitations.Through a synthesis of existing research,this paper highlights the unique strengths and current challenges of bio-inspired approaches in NLP,offering insights into hybrid models and lightweight,resource-efficient adaptations for real-time processing.Finally,we outline future research directions that emphasize the development of scalable,effective bio-inspired methods adaptable to evolving data environments. 展开更多
关键词 Natural language processing BIO-INSPIRED genetic algorithms ant colony optimization particle swarm optimization
在线阅读 下载PDF
A Survey of Analysis on Quantum Algorithms for Communication
20
作者 Huang Yuhong Cui Chunfeng +5 位作者 Pan Chengkang Hou Shuai Sun Zhiwen Lu Xian Li Xinying Yuan Yifei 《China Communications》 2025年第6期1-23,共23页
Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in comm... Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in communication and its potential applications in various areas such as network optimization,signal processing,and machine learning for communication.First,the basic principle of quantum computing,quantum physics systems,and quantum algorithms are analyzed.Then,based on the classification of quantum algorithms,several important basic quantum algorithms,quantum optimization algorithms,and quantum machine learning algorithms are discussed in detail.Finally,the basic ideas and feasibility of introducing quantum algorithms into communications are emphatically analyzed,which provides a reference to address computational bottlenecks in communication networks. 展开更多
关键词 network optimization physical system quantum computing quantum machine learning quantum optimization algorithm signal processing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部