期刊文献+
共找到10,132篇文章
< 1 2 250 >
每页显示 20 50 100
Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics
1
作者 Shaobo Deng Meiru Xie +3 位作者 Bo Wang Shuaikun Zhang Sujie Guan Min Li 《Computers, Materials & Continua》 2025年第2期2723-2751,共29页
In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update ... In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak ecology in nature and the competitive-cooperative strategies among species. According to the principles of the algorithm, the population is first adaptively divided into many subgroups based on the fitness level of particles. Then, particles within each subgroup are divided into three different types based on their evolutionary levels, employing different adaptive inertia weight rules and dynamic learning mechanisms to define distinct learning modes. Consequently, all particles play their respective roles in promoting the global optimization performance of the algorithm, similar to different species in the ecological pattern of mountain peaks. Experimental validation of the PEPSO performance was conducted on 18 public datasets. The experimental results demonstrate that the PEPSO outperforms other PSO variant-based feature selection methods and mainstream feature selection methods based on intelligent optimization algorithms in terms of overall performance in global search capability, classification accuracy, and reduction of feature space dimensions. Wilcoxon signed-rank test also confirms the excellent performance of the PEPSO. 展开更多
关键词 Machine learning feature selection evolutionary algorithm particle swarm optimization
在线阅读 下载PDF
An Improved Animated Oat Optimization Algorithm with Particle Swarm Optimization for Dry Eye Disease Classification
2
作者 Essam H.Houssein Eman Saber Nagwan Abdel Samee 《Computer Modeling in Engineering & Sciences》 2025年第8期2445-2480,共36页
Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design... Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design(CAD)system that presents a new method for DED classification called(IAOO-PSO),which is a powerful Feature Selection technique(FS)that integrates with Opposition-Based Learning(OBL)and Particle Swarm Optimization(PSO).We improve the speed of convergence with the PSO algorithmand the exploration with the IAOO algorithm.The IAOO is demonstrated to possess superior global optimization capabilities,as validated on the IEEE Congress on Evolutionary Computation 2022(CEC’22)benchmark suite and compared with seven Metaheuristic(MH)algorithms.Additionally,an IAOO-PSO model based on Support Vector Machines(SVMs)classifier is proposed for FS and classification,where the IAOO-PSO is used to identify the most relevant features.This model was applied to the DED dataset comprising 20,000 cases and 26 features,achieving a high classification accuracy of 99.8%,which significantly outperforms other optimization algorithms.The experimental results demonstrate the reliability,success,and efficiency of the IAOO-PSO technique for both FS and classification in the detection of DED. 展开更多
关键词 Feature selection(FS) machine learning(ML) animated oat optimization algorithm(AOO) dry eye disease(DED) oppositional-based learning(OBL) particle swarm optimization(PSO)
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights
3
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 particle swarm optimization(PSO) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
Physics-informed neural network optimized by particle swarm algorithm for accurate prediction of blast-induced peak particle velocity
4
作者 Lang Qiu Yujie Zhu +3 位作者 Chen Xu Gaofeng Ren Yingguo Hu Xiaoli Liu 《Intelligent Geoengineering》 2025年第3期126-140,共15页
Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV pred... Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV prediction by combining conventional empirical equations with physics-informed neural networks(PINN)and optimizing the model parameters via the Particle Swarm Optimization(PSO)algorithm.The proposed PSO-PINN framework was rigorously benchmarked against seven established machine learning approaches:Multilayer Perceptron(MLP),Extreme Gradient Boosting(XGBoost),Random Forest(RF),Support Vector Regression(SVR),Gradient Boosting Decision Tree(GBDT),Adaptive Boosting(Adaboost),and Gene Expression Programming(GEP).Comparative analysis showed that PSO-PINN outperformed these models,achieving RMSE reductions of 17.82-37.63%,MSE reductions of 32.47-61.10%,AR improvements of 2.97-21.19%,and R^(2)enhancements of 7.43-29.21%,demonstrating superior accuracy and generalization.Furthermore,the study determines the impact of incorporating empirical formulas as physical constraints in neural networks and examines the effects of different empirical equations,particle swarm size,iteration count in PSO,regularization coefficient,and learning rate in PINN on model performance.Lastly,a predictive system for blast vibration PPV is designed and implemented.The research outcomes offer theoretical references and practical recommendations for blast vibration forecasting in similar engineering applications. 展开更多
关键词 Peak particle velocity Blast-induced vibration particle swarm optimization algorithm Physics-informed neural network Prediction system
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
5
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Variational Data Assimilation Method Using Parallel Dual Populations Particle Swarm Optimization Algorithm 被引量:1
6
作者 WU Zhongjian LI Junyan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第1期59-66,共8页
In recent years,numerical weather forecasting has been increasingly emphasized.Variational data assimilation furnishes precise initial values for numerical forecasting models,constituting an inherently nonlinear optim... In recent years,numerical weather forecasting has been increasingly emphasized.Variational data assimilation furnishes precise initial values for numerical forecasting models,constituting an inherently nonlinear optimization challenge.The enormity of the dataset under consideration gives rise to substantial computational burdens,complex modeling,and high hardware requirements.This paper employs the Dual-Population Particle Swarm Optimization(DPSO)algorithm in variational data assimilation to enhance assimilation accuracy.By harnessing parallel computing principles,the paper introduces the Parallel Dual-Population Particle Swarm Optimization(PDPSO)Algorithm to reduce the algorithm processing time.Simulations were carried out using partial differential equations,and comparisons in terms of time and accuracy were made against DPSO,the Dynamic Weight Particle Swarm Algorithm(PSOCIWAC),and the TimeVarying Double Compression Factor Particle Swarm Algorithm(PSOTVCF).Experimental results indicate that the proposed PDPSO outperforms PSOCIWAC and PSOTVCF in convergence accuracy and is comparable to DPSO.Regarding processing time,PDPSO is 40%faster than PSOCIWAC and PSOTVCF and 70%faster than DPSO. 展开更多
关键词 parallel algorithm variational data assimilation dual-population particle swarm optimization algorithm diffusion mechanism
原文传递
Robust Particle Swarm Optimization Algorithm for Modeling the Effectof Oxides Thermal Properties on AMIG 304L Stainless Steel Welds
7
作者 Rachid Djoudjou Abdeljlil Chihaoui Hedhibi +3 位作者 Kamel Touileb Abousoufiane Ouis Sahbi Boubaker Hani Said Abdo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1809-1825,共17页
There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipmen... There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties. 展开更多
关键词 Activated metal inert gas welding stainless steel activating flux oxides’thermal properties particle swarm optimization
在线阅读 下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
8
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
在线阅读 下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
9
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
在线阅读 下载PDF
Surrogate-Assisted Particle Swarm Optimization Algorithm With Pareto Active Learning for Expensive Multi-Objective Optimization 被引量:15
10
作者 Zhiming Lv Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期838-849,共12页
For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially... For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space(the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning(ε-PAL)method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value ofεwhere the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines(MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization(MOPSO) algorithms. 展开更多
关键词 MULTIOBJECTIVE optimization PARETO active learning particle swarm optimization (PSO) surrogate
在线阅读 下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
11
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
12
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
Inversion of Rayleigh wave dispersion curves based on the Osprey Optimization Algorithm
13
作者 Zhi Li Hang-yu Yue +3 位作者 De-xi Ma Yu Fu Jing-yang Ni Jin-jun Pi 《Applied Geophysics》 2025年第3期804-819,896,897,共18页
In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization al... In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization algorithms used in dispersion curve inversion are highly dependent on the initial model and are prone to being trapped in local optima,while classical global optimization algorithms often suffer from slow convergence and low solution accuracy.To address these issues,this study introduces the Osprey Optimization Algorithm(OOA),known for its strong global search and local exploitation capabilities,into the inversion of dispersion curves to enhance inversion performance.In noiseless theoretical models,the OOA demonstrates excellent inversion accuracy and stability,accurately recovering model parameters.Even in noisy models,OOA maintains robust performance,achieving high inversion precision under high-noise conditions.In multimode dispersion curve tests,OOA effectively handles higher modes due to its efficient global and local search capabilities,and the inversion results show high consistency with theoretical values.Field data from the Wyoming region in the United States and a landfill site in Italy further verify the practical applicability of the OOA.Comprehensive test results indicate that the OOA outperforms the Particle Swarm Optimization(PSO)algorithm,providing a highly accurate and reliable inversion strategy for dispersion curve inversion. 展开更多
关键词 surface wave exploration dispersion curve inversion Osprey optimization algorithm particle swarm optimization geophysical inversion
在线阅读 下载PDF
A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System
14
作者 Geetanjali Dei Deepak Kumar Gupta +3 位作者 Binod Kumar Sahu Amitkumar V.Jha Bhargav Appasani Nicu Bizon 《Energy Engineering》 2025年第8期3399-3431,共33页
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno... This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework. 展开更多
关键词 Integral time multiplied by absolute error(ITAE) load frequency control(LFC) particle swarm optimization(PSO) tilted integral derivative controller(TID) independent system operator(ISO) walrus optimization algorithm(WaOA) proportional integral derivative controller(PID)
在线阅读 下载PDF
A Proposed Feature Selection Particle Swarm Optimization Adaptation for Intelligent Logistics--A Supply Chain Backlog Elimination Framework
15
作者 Yasser Hachaichi Ayman E.Khedr Amira M.Idrees 《Computers, Materials & Continua》 SCIE EI 2024年第6期4081-4105,共25页
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a... The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research. 展开更多
关键词 optimization particle swarm optimization algorithm feature selection LOGISTICS supply chain management backlogs
在线阅读 下载PDF
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture
16
作者 Prasanna Kumar Kannughatta Ranganna Siddesh Gaddadevara Matt +2 位作者 Chin-Ling Chen Ananda Babu Jayachandra Yong-Yuan Deng 《Computers, Materials & Continua》 SCIE EI 2024年第8期2557-2578,共22页
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications... In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks. 展开更多
关键词 Fog computing fractional selectivity approach particle swarm optimization algorithm task scheduling virtual machine allocation
在线阅读 下载PDF
Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
17
作者 Shuai Zhou Dazhi Wang +2 位作者 Yongliang Ni Keling Song Yanming Li 《Computers, Materials & Continua》 SCIE EI 2024年第5期2187-2207,共21页
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame... In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness. 展开更多
关键词 Transformation function filled function fuzzy particle swarm optimization algorithm permanent magnet synchronous motor parameter identification
在线阅读 下载PDF
Enhanced permeability prediction in porous media using particle swarm optimization with multi-source integration
18
作者 Zhiping Chen Jia Zhang +2 位作者 Daren Zhang Xiaolin Chang Wei Zhou 《Artificial Intelligence in Geosciences》 2024年第1期282-293,共12页
Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues.However,the complexity of porous media often limits the effectiveness of indivi... Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues.However,the complexity of porous media often limits the effectiveness of individual prediction methods.This study introduces a novel Particle Swarm Optimization-based Permeability Integrated Prediction model(PSO-PIP),which incorporates a particle swarm optimization algorithm enhanced with dy-namic clustering and adaptive parameter tuning(KGPSO).The model integrates multi-source data from the Lattice Boltzmann Method(LBM),Pore Network Modeling(PNM),and Finite Difference Method(FDM).By assigning optimal weight coefficients to the outputs of these methods,the model minimizes deviations from actual values and enhances permeability prediction performance.Initially,the computational performances of the LBM,PNM,and FDM are comparatively analyzed on datasets consisting of sphere packings and real rock samples.It is observed that these methods exhibit computational biases in certain permeability ranges.The PSOPIP model is proposed to combine the strengths of each computational approach and mitigate their limitations.The PSO-PIP model consistently produces predictions that are highly congruent with actual permeability values across all prediction intervals,significantly enhancing prediction accuracy.The outcomes of this study provide a new tool and perspective for the comprehensive,rapid,and accurate prediction of permeability in porous media. 展开更多
关键词 Porous media particle swarm optimization algorithm Multi-source data integration Permeability prediction
在线阅读 下载PDF
Blending Scheduling under Uncertainty Based on Particle Swarm Optimization Algorithm 被引量:16
19
作者 ZHAO Xiaoqiang(赵小强) +1 位作者 RONG Gang(荣冈) 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第4期535-541,共7页
Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. ... Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. Particle swarm optimization (PSO) algorithm is developed for nonlinear optimization problems with both contin- uous and discrete variables. In order to obtain a global optimum solution quickly, PSO algorithm is applied to solve the problem of blending scheduling under uncertainty. The calculation results based on an example of gasoline blending agree satisfactory with the ideal values, which illustrates that the PSO algorithm is valid and effective in solving the blending scheduling problem. 展开更多
关键词 blending scheduling UNCERTAINTY gasoline blending particle swarm optimization algorithm nonlinear optimization
在线阅读 下载PDF
An Improved Particle Swarm Optimization Algorithm with Harmony Strategy for the Location of Critical Slip Surface of Slopes 被引量:12
20
作者 李亮 褚雪松 《China Ocean Engineering》 SCIE EI 2011年第2期357-364,共8页
The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy ... The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters. 展开更多
关键词 slope stability analysis limit equilibrium method particle swarm optimization algorithm harmony strategy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部