This paper aims to solve the resonance failure probability and develop an effective method to estimate the effects of variables and failure modes on failure probability of axially functionally graded material(FGM)pipe...This paper aims to solve the resonance failure probability and develop an effective method to estimate the effects of variables and failure modes on failure probability of axially functionally graded material(FGM)pipe conveying fluid.Correspondingly,the natural frequency of axially FGM pipes conveying fluid is calculated using the differential quadrature method(DQM).A variable sensitivity analysis(VSA)is introduced to measure the effect of each random variable,and a mode sensitivity analysis(MSA)is introduced to acquire the importance ranking of failure modes.Then,an active learning Kriging(ALK)method is established to calculate the resonance failure probability and sensitivity indices,which greatly improves the application of resonance reliability analysis for pipelines in engineering practice.Based on the resonance reliability analysis method,the effects of fluid velocity,volume fraction and fluid density of axially FGM pipe conveying fluid on resonance reliability are analyzed.The results demonstrate that the proposed method has great performance in the anti-resonance analysis of pipes conveying fluid.展开更多
The application of reliability analysis and reliability sensitivity analysis methods to complicated structures faces two main challenges:small failure probability(typical less than 10-5)and time-demanding mechanical m...The application of reliability analysis and reliability sensitivity analysis methods to complicated structures faces two main challenges:small failure probability(typical less than 10-5)and time-demanding mechanical models.This paper proposes an improved active learning surrogate model method,which combines the advantages of the classical Active Kriging–Monte Carlo Simulation(AK-MCS)procedure and the Adaptive Linked Importance Sampling(ALIS)procedure.The proposed procedure can,on the one hand,adaptively produce a series of intermediate sampling density approaching the quasi-optimal Importance Sampling(IS)density,on the other hand,adaptively generate a set of intermediate surrogate models approaching the true failure surface of the rare failure event.Then,the small failure probability and the corresponding reliability sensitivity indices are efficiently estimated by their IS estimators based on the quasi-optimal IS density and the surrogate models.Compared with the classical AK-MCS and Active Kriging–Importance Sampling(AK-IS)procedure,the proposed method neither need to build very large sample pool even when the failure probability is extremely small,nor need to estimate the Most Probable Points(MPPs),thus it is computationally more efficient and more applicable especially for problems with multiple MPPs.The effectiveness and engineering applicability of the proposed method are demonstrated by one numerical test example and two engineering applications.展开更多
基金The funding was provided by Laboratory Fund (Grant No.SYJJ200320).
文摘This paper aims to solve the resonance failure probability and develop an effective method to estimate the effects of variables and failure modes on failure probability of axially functionally graded material(FGM)pipe conveying fluid.Correspondingly,the natural frequency of axially FGM pipes conveying fluid is calculated using the differential quadrature method(DQM).A variable sensitivity analysis(VSA)is introduced to measure the effect of each random variable,and a mode sensitivity analysis(MSA)is introduced to acquire the importance ranking of failure modes.Then,an active learning Kriging(ALK)method is established to calculate the resonance failure probability and sensitivity indices,which greatly improves the application of resonance reliability analysis for pipelines in engineering practice.Based on the resonance reliability analysis method,the effects of fluid velocity,volume fraction and fluid density of axially FGM pipe conveying fluid on resonance reliability are analyzed.The results demonstrate that the proposed method has great performance in the anti-resonance analysis of pipes conveying fluid.
基金supported by National Natural Science Foundation of China(Nos.51905430,51608446)the Fundamental Research Fund for Central Universities(No.3102018zy011)+1 种基金the supports of Alexander von Humboldt Foundation of Germanythe Top International University Visiting Program for Outstanding Young scholars of Northwestern Polytechnical University。
文摘The application of reliability analysis and reliability sensitivity analysis methods to complicated structures faces two main challenges:small failure probability(typical less than 10-5)and time-demanding mechanical models.This paper proposes an improved active learning surrogate model method,which combines the advantages of the classical Active Kriging–Monte Carlo Simulation(AK-MCS)procedure and the Adaptive Linked Importance Sampling(ALIS)procedure.The proposed procedure can,on the one hand,adaptively produce a series of intermediate sampling density approaching the quasi-optimal Importance Sampling(IS)density,on the other hand,adaptively generate a set of intermediate surrogate models approaching the true failure surface of the rare failure event.Then,the small failure probability and the corresponding reliability sensitivity indices are efficiently estimated by their IS estimators based on the quasi-optimal IS density and the surrogate models.Compared with the classical AK-MCS and Active Kriging–Importance Sampling(AK-IS)procedure,the proposed method neither need to build very large sample pool even when the failure probability is extremely small,nor need to estimate the Most Probable Points(MPPs),thus it is computationally more efficient and more applicable especially for problems with multiple MPPs.The effectiveness and engineering applicability of the proposed method are demonstrated by one numerical test example and two engineering applications.