The illicit trafficking of special nuclear materials(SNMs)poses a grave threat to global security and necessitates the development of effective nuclear material identification methods.This study investigated a method ...The illicit trafficking of special nuclear materials(SNMs)poses a grave threat to global security and necessitates the development of effective nuclear material identification methods.This study investigated a method to isotopically identify the SNMs,including^(233,235,238)U,^(239-242)Pu,and^(232)Th,based on the detection of delayedγ-rays from photofission fragments.The delayedγ-ray spectra resulting from the photofission of SNMs irradiated by a 14 MeVγbeam with a total of 10~9 were simulated using Geant4.Three high-yield fission fragments,namely^(138)Cs,^(89)Rb,and^(94)Y,were selected as candidate fragments for SNM identification.The yield ratios of these three fragments were calculated,and the results from the different SNMs were compared.The yield ratio of^(138)Cs/^(89)Rb was used to identify most SNMs,including^(233,235,238)U,^(242)Pu,and^(232)Th,with a confidence level above 95%.To identify^(239-241)Pu with the same confidence,a higher total number of 10^(11)γbeams is required.However,although the^(94)Y/^(89)Rb ratio is suitable for elementally identifying SNMs,isotopic identification is difficult.In addition,the count rate of the delayedγabove 3 MeV can be used to rapidly detect the presence of nuclear materials.展开更多
基金supported by the National Key Research and Development Program(No.2022YFA1603300)the National Natural Science Foundation of China(Nos.U2230133,12305266,11921006,12405282)National Grand Instrument Project(No.2019YFF01014400)。
文摘The illicit trafficking of special nuclear materials(SNMs)poses a grave threat to global security and necessitates the development of effective nuclear material identification methods.This study investigated a method to isotopically identify the SNMs,including^(233,235,238)U,^(239-242)Pu,and^(232)Th,based on the detection of delayedγ-rays from photofission fragments.The delayedγ-ray spectra resulting from the photofission of SNMs irradiated by a 14 MeVγbeam with a total of 10~9 were simulated using Geant4.Three high-yield fission fragments,namely^(138)Cs,^(89)Rb,and^(94)Y,were selected as candidate fragments for SNM identification.The yield ratios of these three fragments were calculated,and the results from the different SNMs were compared.The yield ratio of^(138)Cs/^(89)Rb was used to identify most SNMs,including^(233,235,238)U,^(242)Pu,and^(232)Th,with a confidence level above 95%.To identify^(239-241)Pu with the same confidence,a higher total number of 10^(11)γbeams is required.However,although the^(94)Y/^(89)Rb ratio is suitable for elementally identifying SNMs,isotopic identification is difficult.In addition,the count rate of the delayedγabove 3 MeV can be used to rapidly detect the presence of nuclear materials.