期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Influence and sensitivity analysis of thermal parameters on temperature field distribution of active thermal insulated roadway in high temperature mine 被引量:6
1
作者 Weijing Yao Jianyong Pang +1 位作者 Qinyong Ma Happiness Lyimo 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期47-63,共17页
To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is u... To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is used for sensitivity analysis of heat insulation layer with different thermal conductivity and thickness,as well as surrounding rock with different thermal conductivity and temperature on a heat-adjusting zone radius,surrounding rock temperature field and wall temperature.The results show that the heat-adjusting zone radius will entirely be in the right power index relationship to the ventilation time.Decrease in thermal conductivity and increase in thickness of insulation layer can effectively reduce the disturbance of airflow on the surrounding rock temperature,hence,beneficial for decreasing wall temperature.This favourable trend significantly decreases with ventilation time,increase in thermal conductivity and temperature of surrounding rock,heat-adjusting zone radius,surrounding rock temperature field,and wall temperature.Sensitivity analysis shows that the thermal physical properties of surrounding rock determine the temperature distribution of the roadway,hence,temperature of surrounding rock is considered as the most sensitive factor of all influencing factors.For the spray layer,thermal conductivity is more sensitive,compared to thickness.It is concluded that increase in the spray layer thickness is not as beneficial as using low thermal conductivity insulation material.Therefore,roadway preferential consideration should be given to the rocks with low temperature and thermal conductivity.The application of the insulation layer has positive significance for the thermal environment control in mine roadway,however,increase in the layer thickness without restriction has a limited effect on the thermal insulation. 展开更多
关键词 High temperature mine active thermal insulation Temperature field of surrounding rock Numerical simulation Sensitivity analysis
在线阅读 下载PDF
A concept of capillary active,dynamic insulation integrated with heating,cooling and ventilation,air conditioning system
2
作者 Mark BOMBERG 《Frontiers of Structural and Civil Engineering》 SCIE EI 2010年第4期431-437,共7页
When a historic façade needs to be preserved or when the seismic considerations favor use of a concrete wall system and fire considerations limit exterior thermal insulation,one needs to use interior thermal insu... When a historic façade needs to be preserved or when the seismic considerations favor use of a concrete wall system and fire considerations limit exterior thermal insulation,one needs to use interior thermal insulation systems.Interior thermal insulation systems are less effective than the exterior systems and will not reduce the effect of thermal bridges.Yet they may be successfully used and,in many instances,are recommended as a complement to the exterior insulation.This paper presents one of these cases.It is focused on the most successful applications of capillary active,dynamic interior thermal insulation.This happens when such insulation is integrated with heating,cooling and ventilation,air conditioning(HVAC)system.Starting with a pioneering work of the Technical University in Dresden in development of capillary active interior insulations,we propose a next generation,namely,a bio-fiber thermal insulation.When completing the review,this paper proposes a concept of a joint research project to be undertaken by partners from the US(where improvement of indoor climate in exposed coastal areas is needed),China(indoor climate in non-air conditioned concrete buildings is an issue),and Germany(where the bio-fiber technology has been developed). 展开更多
关键词 capillary active insulation integrated heating cooling and ventilation air conditioning(HVAC)and building enclosure dynamic insulation switchable thermal resistance variable U-value walls
原文传递
Simulation study of a dual-cavity window with gravity-driven cooling mechanism 被引量:1
3
作者 Liao Li Chong Zhang +4 位作者 Xinhua Xu Jinghua Yu Feifei Wang Wenjie Gang Jinbo Wang 《Building Simulation》 SCIE EI CSCD 2022年第7期1339-1352,共14页
Utilization of high temperature cooling sources or natural energy sources can potentially contribute to improving energy efficiency in buildings.In this study,a dual-cavity window with gravity-driven cooling mechanism... Utilization of high temperature cooling sources or natural energy sources can potentially contribute to improving energy efficiency in buildings.In this study,a dual-cavity window with gravity-driven cooling mechanism(GDC window)was proposed to integrate the low-grade cooling sources into the glazing system for improving the thermal performance of the window.The embedded pipes circulated with low-grade cooling water are the key component of GDC window,which can remove the absorbed solar heat and reduce the heat gain through the window.A numerical model based on CFD simulation was developed to analyze the flow characteristic and heat transfer within the GDC window.Model validation was conducted by comparing the simulation results with measurement data obtained from previous study.Numerical simulations were carried out to compare the thermal performance of GDC window with that of conventional blinds window.Sensitivity analysis was performed to evaluate the influence of some design parameters on the flow characteristic and thermal performance of GDC window.The simulated results show that compared with the blinds window,the GDC window reduces 57.4%and 40.4% of heat gain in summer for the low-grade cooling water of 18℃ and 25℃;respectively.Reducing the flow resistance within the GDC window is significant for improving the heat removal performance of the embedded pipes.This study provides an alternative solution to integrate the low-grade cooling sources into the glazing system for enhancing the energy-efficiency and decreasing the building energy demand in cooling-dominated buildings. 展开更多
关键词 window system low-grade cooling source active insulation gravity-driven CFD
原文传递
Performance improvement of a pulse tube cryocooler with a single compressor through cascade utilization of cold energy
4
作者 Xuming LIU Xiafan XU +4 位作者 Biao YANG Xiaotong XI Liubiao CHEN Junjie WANG Yuan ZHOU 《Frontiers in Energy》 SCIE CSCD 2021年第2期345-357,共13页
The high-frequency pulse tube cryocooler(HPTC)has been attracting increasing and widespread attention in the field of cryogenic technology because of its compact structure,low vibration,and reliable operation.The gas-... The high-frequency pulse tube cryocooler(HPTC)has been attracting increasing and widespread attention in the field of cryogenic technology because of its compact structure,low vibration,and reliable operation.The gas-coupled HPTC,driven by a single compressor,is currently the simplest and most compact structure.For HPTCs operating below 20 K,in order to obtain the mW cooling capacity,hundreds or even thousands of watts of electrical power are consumed,where radiation heat leakage accounts for a large proportion of their cooling capacity.In this paper,based on SAGE10,a HPTC heat radiation calculation model was first established to study the effects of radiation heat leakage on apparent performance parameters(such as temperature and cooling capacity),and internal parameters(such as enthalpy flow and gas distribution)of the gas-coupled HPTC.An active thermal insulation method of cascade utilization of the cold energy of the system was proposed for the gas-coupled HPTC.Numerical simulations indicate that the reduction of external radiation heat leakage cannot only directly increase the net cooling power,but also decrease the internal gross losses and increase the mass and acoustic power in the lower-temperature section,which further enhances the refrigeration performance.The numerical calculation results were verified by experiments,and the test results showed that the no-load temperature of the developed cryocooler prototype decreased from 15.1 K to 6.4 K,and the relative Carnot efficiency at 15.5 K increased from 0.029%to 0.996%when substituting the proposed active method for the traditional passive method with multi-layer thermal insulation materials. 展开更多
关键词 radiation heat leakage active thermal insulation cascade utilization cold energy performance improvement CRYOCOOLER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部