Fires are one of the most destructive natural disasters and have serious long-term effects on the environment,economy,and human health.In Inner Mongolia Autonomous Region,China,frequent fire disturbance occurs due to ...Fires are one of the most destructive natural disasters and have serious long-term effects on the environment,economy,and human health.In Inner Mongolia Autonomous Region,China,frequent fire disturbance occurs due to the intensification of climate change and human activities.It is crucial to understand the fire regime and estimate the probability of regional fire occurrence and reducing fire losses.However,most studies have primarily focused on the dynamic changes,probability of occurrence,and driving mechanisms of wildfires in the grassland and forest land ecosystems in Inner Mongolia,while insufficient research has been conducted on the spatiotemporal variations in active fires and their impact on the wildfire risk in forest land and grassland.Therefore,in this study,we analyzed the active fire regime based on Moderate Resolution Imaging Spectroradiometer(MODIS)thermal anomalies and burned area products from 2000 to 2022.Combined with climate,topographic,landscape,anthropogenic,and vegetation datasets,logistic regression(LR),support vector machine(SVM),random forest(RF),and convolutional neural network(CNN)models were chosen to estimate the probability of active fire occurrence at the seasonal timescale.The results revealed that:(1)a total of 100,343 active fires occurred in Inner Mongolia and the burned area reached 6.59×104 km².The number of ignition point exhibited a significant increasing trend,while the burned area exhibited a nonsignificant decreasing trend;(2)four active fire belts were detected,namely,the Hetao-Tumochuan Plain fire belt,Xiliao River Plain fire belt,Songnen Plain fire belt,and Hailar River Eroded Plain fire belt.The centroid of the active fires has shifted 456.4 km toward the southwest;(3)RF model achieved the highest accuracy in estimating the probability of active fire occurrence,followed by CNN,and LR and SVM models had lower accuracies;and(4)the distribution of the high and extremely high fire risk areas largely aligned with the four fire belts.The probability of active fire occurrence was the highest in spring,followed by that in autumn,and it gradually decreased in summer and winter.Our results revealed active fires migrated to the southwest and ignition sources increased,despite reduction of the burned area was not significant.The RF model outperformed the other models in predicting the probability of active fire occurrence.These findings contribute to future fire prevention and prediction in Inner Mongolia.展开更多
The interactions between fire,ecosystems,and climate are complex.Tropical ecosystems have dominated global active fires nowadays,yet its causes,mechanisms,and consequences remain relatively poorly understood.To in-ves...The interactions between fire,ecosystems,and climate are complex.Tropical ecosystems have dominated global active fires nowadays,yet its causes,mechanisms,and consequences remain relatively poorly understood.To in-vestigate temporal response of remotely-sensed active fires to intra-annual climate change,several 1-km datasets,including the Moderate-resolution Imaging Spectroradiometer Collection 6(MODIS C6)active fires and the Cli-matologies at High Resolution for the Earth’s Land Surface Areas(CHELSA)climate variables,were gathered to examine the climatic characteristics of active fire incidences,fire-climate correlations,and the average monthly response of active fire occurrences to climate change using the Geographic Information System(GIS)Fishnet tool,Theil-Sen Median slope estimation,Mann-Kendall significance test,and Pearson’s correlation.We concluded that climate variables’trends of nearly two-decade active fires displayed varied degrees of increment in precipitation(Pre),temperature(Tas),and surface downwelling shortwave radiation(Rsds)and inconsistent decrement in near-surface relative humidity(Hurs)and near-surface wind speed(sfcWind).MODIS multi-year(2003-2018)active fires were moderately to strongly correlated negatively with Pre and Hurs at 10 km grid-resolution but positively with sfcWind and Rsds,showing marked geographical variations in correlation direction and strength.The most significant finding is the newly observed inverse relationship between active fires and precipitation on both sides of the equator.High occurrence areas of active fires regularly appear back and forth along with latitudinal changes(at one-degree intervals)in monthly minimum precipitation between the tropical Northern and Southern Hemispheres.The present study contributes to exploring the underlying mechanism of fire-climate interactions against the backdrop of climate warming.展开更多
Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powe...Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.展开更多
The thought of living near an active volcano probably sounds like an unimaginable experience-and rightly so.An active volcano can turn a forested hillside into a lifeless wasteland in seconds.From molten avalanches of...The thought of living near an active volcano probably sounds like an unimaginable experience-and rightly so.An active volcano can turn a forested hillside into a lifeless wasteland in seconds.From molten avalanches of rock to razor-sharp lung-shredding ash,volcanoes threaten people's lives and property.展开更多
Machine learning has emerged as a key approach in wildfire risk prediction research.However,in practical applications,the scarcity of data for specific regions often hindersmodel performance,with models trained on reg...Machine learning has emerged as a key approach in wildfire risk prediction research.However,in practical applications,the scarcity of data for specific regions often hindersmodel performance,with models trained on region-specific data struggling to generalize due to differences in data distributions.While traditional methods based on expert knowledge tend to generalize better across regions,they are limited in leveragingmulti-source data effectively,resulting in suboptimal predictive accuracy.This paper addresses this challenge by exploring how accumulated domain expertise in wildfire prediction can reduce model reliance on large volumes of high-quality data.An active learning algorithm is proposed based on XGBoost for wildfire risk assessment that autonomously identifies low-confidence predictions and seeks re-labeling through a human-in-the-loop or physics-based correction approach.This corrected data is reintegrated into the model,effectively preventing catastrophic forgetting.Experimental results demonstrate that the proposed human-in-the-loop approach significantly enhances labeling accuracy,predictive performance,and preserves the model's ability to generalize.These findings highlight the value of incorporating human expertise into machine learningmodels,offering a practical solution tomitigate data quality challenges and improvemodel reliability in wildfire risk prediction.展开更多
BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking rec...BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.展开更多
Objective Stroke is the third leading cause of death worldwide,with the highest incidence in Asia,particularly in China,where smoking remains a major risk factor.The smoking prevalence in China is similar to that in A...Objective Stroke is the third leading cause of death worldwide,with the highest incidence in Asia,particularly in China,where smoking remains a major risk factor.The smoking prevalence in China is similar to that in Asia.Whether the risk estimates for smoking-related stroke in China and all Asian countries are still unknown which is worth evaluating.Thus,this study aims to compare the Relative Risk(RR)of smoking-attributed stroke among the Chinese and Asian populations.Methods A literature search was conducted from the inception to September 10,2022.Studies meeting the criteria were included.The articles were screened,and related information was extracted.Pooled RRs stratified by smoking status and sex were analyzed,including subgroup analyses for China,other Asian countries,and Asia overall.Finally,publication bias and sensitivity analyses were conducted.Results Thirty-seven articles on the Chinese population and 15 on other Asian populations were included,with a mean Newcastle-Ottawa scale(NOS)score of 7.25.About ever smokers,there had no statistical difference existed in both sexes and females between China and other Asian countries,while the RR of males in other Asian countries[2.31(1.38,3.86)]was higher than that in China[1.21(1.15,1.26)];further subgroup analysis indicated that other Asian countries had higher RR[3.76(3.02,4.67)]in the morbidity subgroup.The RRs of both sexes,males and females,between China and the whole of Asia were not statistically different.As for current and former smokers,no meaningful statistical difference was observed in the pooled RRs of both sexes,males and females,in China,other Asian countries,and all of Asia.Conclusion The RR of males ever smokers in China was smaller than that in other Asian countries due to the few articles of morbidity subgroup,but had no statistical difference with the whole of Asia;other groups of ever smokers,current smokers,and former smokers were not statistically significant with other Asian countries or the whole of Asia.展开更多
Population aging is one of the common challenges in the current world.As people age,the body’s tissues including cells,and molecules inevitably degrade,and their functions gradually decline,causing various age-relate...Population aging is one of the common challenges in the current world.As people age,the body’s tissues including cells,and molecules inevitably degrade,and their functions gradually decline,causing various age-related diseases like Alzheimer’s disease,osteoporosis,low immunity,glucose and lipid metabolism disorders,and cardiovascular diseases.With the continuous increase of the elderly population,the pressure on the medical industry is increasing.To lower the burden on the medical industry and increase the average age of the elderly,it is vital to explore effective anti-aging materials.Ginseng Radix et Rhizoma(Renshen),as a traditional and precious Chinese medicinal herb,is known as the“king of all herbs”.It is famous for its effects of“tonifying Qi,restoring pulse”(helping with the generation of Qi(the fundamental,vital energy that continuously flows within the body)and the circulation of blood)and strengthening the body,nourishing the spleen and lungs,generating fluids and nourishing blood,calming the mind and improving intelligence.Recently,its anti-aging effect has received increasing attention from modern scientific research.This study summarizes the pharmacological effects of the main active ingredients of Renshen(ginsenosides,polysaccharides,etc.)on resisting aging,including preventing neuroaging,suppressing skin aging,mitigating ovarian aging,inhibiting osteoporosis and arthritis,enhancing the immune system of the elderly,protecting the cardiovascular system,resisting aging-induced fatigue and exerting the anti-tumor effects.Through network pharmacology and molecular docking,the anti-aging active ingredients of Renshen were screened,and the key targets and pathways of anti-aging active ingredients in Renshen were determined.Using network pharmacology,totally 106 drug targets and 3,479 disease targets were screened,and 79 common targets between aging and Renshen were identified.Three core targets were identified in the PPI network,including TNF,AKT1,and IL-1β.Molecular docking was used to obtain further verification.This study emphasizes the potential of Renshen as a source of anti-aging activity,which can be developed into a novel drug for the treatment of age-related diseases.展开更多
Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This stud...Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This study employed a simple and efficient solutionbased process to fabricate nanofibers containing aggregation-induced emission(AIE)dyes.The resulting AIE nanofibers exhibited stable and intense fluorescence,nanosecond fluorescence lifetime,and low-loss light transport when functioning as active waveguides.Additionally,crossed nanofiber intersections exhibited diffraction-limited emission spots.The AIE nanofibers demonstrate efficient and ionspecific fluorescence quenching in response to Ag^(+).These results support the development of sensing units capable of operating in liquid environments or in direct contact with skin or tissues,facilitating real-time monitoring of ion concentrations for personalized healthcare management.展开更多
VIIRS 375 m active fire data(VNP14IMG),the highest spatial resolution available cost-free fire product,were assessed for representing fire in typical degraded tropical peatlands in Indonesia.The results of applying th...VIIRS 375 m active fire data(VNP14IMG),the highest spatial resolution available cost-free fire product,were assessed for representing fire in typical degraded tropical peatlands in Indonesia.The results of applying the Tropical Peatland Combustion Algorithm to Landsat-8(ToPeCAl-L8)daytime imagery were utilised as the fire references.To permit the comparison of non-simultaneous VNP14IMG and ToPeCAl-L8,peatland fire propagation speeds resulting from previous study using TET-1 data in Central Kalimantan’s peatlands were utilised.Most peatland fires were still within 750 m from their source over 15 h under uniform conditions,except for very large fires.The detection rates of nighttime VNP14IMG compared with ToPeCAl-L8 showed about 80%agreement for small fire areas(<14 ha).For fires larger than 14 ha,a dissolved 375 m buffer(cluster buffer)of VNP14IMG active fires with an integration of nighttime and daytime acquisitions,produced a probability of detection up to 90%.These results generated a recommendation for implementing cluster buffer analysis and integration of nighttime and daytime analysis of VNP14IMG data for better accuracy in fire detection for ground fire management.They also demonstrate the utility of the ToPeCAl-L8 algorithm with VIIRS 375 m active fire data.展开更多
Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs freq...Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon (SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing'an Mountains (Greater Xing'an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years (2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008 (p < 0.05). The correlations between active organic carbon and environmental factors such as water content, pH value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance.展开更多
Physical inactivity has been identified as one of the leading causes of many chronic diseases such as cardiovascular disease,type 2 diabetes,and obesity.Technology such as video games plays a complicated role in physi...Physical inactivity has been identified as one of the leading causes of many chronic diseases such as cardiovascular disease,type 2 diabetes,and obesity.Technology such as video games plays a complicated role in physical inactivity—much like a double-edged sword.Traditionally,video games have contributed to the epidemic of physical inactivity and have展开更多
Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synt...Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synthesized by pyrolysis was used as the precipitant to prepare La(OH)_(3).The species distribution of LaCl_(3)and LaCl_(3)-MgCl_(2)mixed system solution was calculated,and the kinetic analysis of the precipi-tation process was carried out to confirm the key factors influencing the precipitation of La(OH)_(3).The results show that La(OH)_(3)with D_(50)of 5.57μm,a specific surface area of 25.70 m^(2)/g,a rod-like shape,and MgO content of 0.044 wt%,was successfully prepared by adding active MgO.The precipitation ratio of La reaches 99.92%.The La(OH)_(3)precipitation is controlled by the diffusion process.The activity of MgO has a significant influence on MgO content in the precipitate.The preparation of La(OH)_(3)by active MgO provides a potential way for an eco-friendly preparation method of rare earth.展开更多
The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses ...The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses both matched and mismatched disturbances is formulated.Due to the fact that only position information can be measured,a linear Extended State Observer(ESO)is introduced to estimate unknown states and matched disturbances,while a dedicated disturbance observer is constructed to estimate mismatched disturbances.Different from the traditional observer results,the design of the disturbance observer used in this study is carried out under the constraint of output feedback.Furthermore,an output feedback nonlinear controller is proposed leveraging the aforementioned observers to achieve accurate trajectory tracking.To mitigate the inherent differential explosion problem of the traditional backstepping framework,a finite-time stable command filter is incorporated.Simultaneously,considering transient filtering errors,a set of error compensation signals are designed to counter their negative impact effectively.Theoretical analysis affirms that the proposed control strategy ensures the boundedness of all signals within the closed-loop system.Additionally,under the specific condition of only time-invariant disturbances in the system,the conclusion of asymptotic stability is established.Finally,the algorithm’s efficacy is validated through comparative experiments.展开更多
In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challeng...In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach.In 2022,Escherichia coli,a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence,emerged as the predominant pathogenic bacterium in China.The rapid emergence of antibiotic-resistant E.coli strains has rendered antibiotics insufficient to fight E.coli infections.Traditional Chinese medicine(TCM)has made remarkable contributions to the health of Chinese people for thousands of years,and its significant therapeutic effects have been proven in clinical practice.In this paper,we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E.coli infections.First of all,this review introduces the classification,antibiotic resistance characteristics and mechanisms of E.coli.Then,the TCM formulas and extracts are listed along with their active ingredients against E.coli,including extraction solution,minimum inhibitory concentration(MIC),and the antibacterial mechanisms.In addition,there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E.coli infections,and we provide a summary of this evidence and its underlying mechanisms.In conclusion,we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E.coli infections.We hold the opinion that TCM will play an important role in global health,pharmaceutical development,and livestock farming in the future.展开更多
Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and in...Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration re...This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration reduction characteristics are proposed to facilitate the design of the AESDFD.To achieve this,the nonlinear friction force is initially represented as equivalent stiffness and damping coefficients,based on the ball-plate friction model.Second,three evaluation parameters—optimal slipping displacement,loss factor,and controllability—are proposed to reveal the vibration reduction characteristics of the AESDFD,alongside determining the optimal normal force.Subsequently,the finite element method,in conjunction with the ball-plate friction model,is introduced to formulate the governing equation of a low-pressure rotor system equipped with AESDFDs.The steady-state responses of the AESDFDs-rotor system are solved using the harmonic balance method combined with an efficient iteration method.Finally,the solutions are validated on the AESDFDs-rotor system both numerically and experimentally.The results indicate that controllability effectively assesses the vibration reduction performance of the AESDFD and is relatively insensitive to variations in low normal force.Away from the critical speed,the AESDFD suppresses vibration by altering the resonance position of the rotor system through its stiffness coefficient.Near the critical speed,vibration reduction is achieved primarily through energy dissipation by the damping coefficient.If the loss factor is less than one,the stiffness coefficient can diminish the vibration reduction effect of the damping coefficient.Notably,the optimal normal force of the AESDFD achieves optimal vibration reduction effect.This study reveals that changes in rotor system unbalance do not affect the vibration reduction characteristics of the AESDFD,with the same upper limit to the vibration reduction effect of the AESDFD.展开更多
Natural gas hydrate(NGH)has a bright future as a clean energy source with huge reserves.Coring is one of the most direct methods for NGH exploration and research.Preserving the in-situ properties of the core as much a...Natural gas hydrate(NGH)has a bright future as a clean energy source with huge reserves.Coring is one of the most direct methods for NGH exploration and research.Preserving the in-situ properties of the core as much as possible during the coring process is crucial for the assessment of NGH resources.However,most existing NGH coring techniques cannot preserve the in-situ temperature of NGH,leading to distortion of the physical properties of the obtained core,which makes it difficult to effectively guide NGH exploration and development.To overcome this limitation,this study introduces an innovative active temperature-preserved coring method for NGH utilizing phase change materials(PCM).An active temperature-preserved corer(ATPC)is designed and developed,and an indoor experimental system is established to investigate the heat transfer during the coring process.Based on the experimental results under different environment temperatures,a heat transfer model for the entire ATPC coring process has been established.The indoor experimental results are consistent with the theoretical predictions of the heat transfer model,confirming its validity.This model has reconstructed the temperature changes of the NGH core during the coring process,demonstrating that compared to the traditional coring method with only passive temperature-preserved measures,ATPC can effectively reduce the core temperature by more than 5.25℃.With ATPC,at environment temperatures of 15,20,25,and 30℃,the duration of low-temperature state for the NGH core is 53.85,32.87,20.32,and 11.83 min,respectively.These findings provide new perspectives on temperature-preserving core sampling in NGH and provide technical support for exploration and development in NGH.展开更多
Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical...Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.展开更多
基金funded by the First-Class Discipline Research Special Project of Inner Mongolia(YLXKZX-NSD-040)the Natural Science Foundation of Inner Mongolia(2022LHQN04003,2023QN04009)+1 种基金the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics(NCXKY25019,NCYWZ22003)the National Social Science Fund of China(22BZS134).
文摘Fires are one of the most destructive natural disasters and have serious long-term effects on the environment,economy,and human health.In Inner Mongolia Autonomous Region,China,frequent fire disturbance occurs due to the intensification of climate change and human activities.It is crucial to understand the fire regime and estimate the probability of regional fire occurrence and reducing fire losses.However,most studies have primarily focused on the dynamic changes,probability of occurrence,and driving mechanisms of wildfires in the grassland and forest land ecosystems in Inner Mongolia,while insufficient research has been conducted on the spatiotemporal variations in active fires and their impact on the wildfire risk in forest land and grassland.Therefore,in this study,we analyzed the active fire regime based on Moderate Resolution Imaging Spectroradiometer(MODIS)thermal anomalies and burned area products from 2000 to 2022.Combined with climate,topographic,landscape,anthropogenic,and vegetation datasets,logistic regression(LR),support vector machine(SVM),random forest(RF),and convolutional neural network(CNN)models were chosen to estimate the probability of active fire occurrence at the seasonal timescale.The results revealed that:(1)a total of 100,343 active fires occurred in Inner Mongolia and the burned area reached 6.59×104 km².The number of ignition point exhibited a significant increasing trend,while the burned area exhibited a nonsignificant decreasing trend;(2)four active fire belts were detected,namely,the Hetao-Tumochuan Plain fire belt,Xiliao River Plain fire belt,Songnen Plain fire belt,and Hailar River Eroded Plain fire belt.The centroid of the active fires has shifted 456.4 km toward the southwest;(3)RF model achieved the highest accuracy in estimating the probability of active fire occurrence,followed by CNN,and LR and SVM models had lower accuracies;and(4)the distribution of the high and extremely high fire risk areas largely aligned with the four fire belts.The probability of active fire occurrence was the highest in spring,followed by that in autumn,and it gradually decreased in summer and winter.Our results revealed active fires migrated to the southwest and ignition sources increased,despite reduction of the burned area was not significant.The RF model outperformed the other models in predicting the probability of active fire occurrence.These findings contribute to future fire prevention and prediction in Inner Mongolia.
基金funded by National Natural Science Foundation of China(Grants No.42371282 and 42130508)the Second Ti-betan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK1006)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2020055)。
文摘The interactions between fire,ecosystems,and climate are complex.Tropical ecosystems have dominated global active fires nowadays,yet its causes,mechanisms,and consequences remain relatively poorly understood.To in-vestigate temporal response of remotely-sensed active fires to intra-annual climate change,several 1-km datasets,including the Moderate-resolution Imaging Spectroradiometer Collection 6(MODIS C6)active fires and the Cli-matologies at High Resolution for the Earth’s Land Surface Areas(CHELSA)climate variables,were gathered to examine the climatic characteristics of active fire incidences,fire-climate correlations,and the average monthly response of active fire occurrences to climate change using the Geographic Information System(GIS)Fishnet tool,Theil-Sen Median slope estimation,Mann-Kendall significance test,and Pearson’s correlation.We concluded that climate variables’trends of nearly two-decade active fires displayed varied degrees of increment in precipitation(Pre),temperature(Tas),and surface downwelling shortwave radiation(Rsds)and inconsistent decrement in near-surface relative humidity(Hurs)and near-surface wind speed(sfcWind).MODIS multi-year(2003-2018)active fires were moderately to strongly correlated negatively with Pre and Hurs at 10 km grid-resolution but positively with sfcWind and Rsds,showing marked geographical variations in correlation direction and strength.The most significant finding is the newly observed inverse relationship between active fires and precipitation on both sides of the equator.High occurrence areas of active fires regularly appear back and forth along with latitudinal changes(at one-degree intervals)in monthly minimum precipitation between the tropical Northern and Southern Hemispheres.The present study contributes to exploring the underlying mechanism of fire-climate interactions against the backdrop of climate warming.
基金This work was financially supported by the Opening Project of National Local Joint Laboratory for Advanced Textile Processing and Clean Production(FX2022006)Guiding Project of Natural Science Foundation of Hubei province(2022CFC072)+2 种基金Guiding Project of Scientific Research Plan of Education Department of Hubei Province(B2022081)Shenghong Key Scientific Research Project of Emergency Support and Public Safety Fiber Materials and Products(2022-rw0101)Science and Technology Guidance Program of China National Textile and Apparel Council(2022002).
文摘Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.
文摘The thought of living near an active volcano probably sounds like an unimaginable experience-and rightly so.An active volcano can turn a forested hillside into a lifeless wasteland in seconds.From molten avalanches of rock to razor-sharp lung-shredding ash,volcanoes threaten people's lives and property.
基金funded by the Natural Science Foundation of Guangxi Province(Grant AB24010157)Research Project of the Sichuan Forestry and Grassland Bureau(Grants G202206012 and G202206012-2)+1 种基金National Natural Science Foundation of China(Grants 32471878,62373081,U2330206,U2230206 and 62173068)Sichuan Science and Technology Program(Grants 2024NSFSC1483,2024ZYD0156,2023NSFC1962 and DQ202412).
文摘Machine learning has emerged as a key approach in wildfire risk prediction research.However,in practical applications,the scarcity of data for specific regions often hindersmodel performance,with models trained on region-specific data struggling to generalize due to differences in data distributions.While traditional methods based on expert knowledge tend to generalize better across regions,they are limited in leveragingmulti-source data effectively,resulting in suboptimal predictive accuracy.This paper addresses this challenge by exploring how accumulated domain expertise in wildfire prediction can reduce model reliance on large volumes of high-quality data.An active learning algorithm is proposed based on XGBoost for wildfire risk assessment that autonomously identifies low-confidence predictions and seeks re-labeling through a human-in-the-loop or physics-based correction approach.This corrected data is reintegrated into the model,effectively preventing catastrophic forgetting.Experimental results demonstrate that the proposed human-in-the-loop approach significantly enhances labeling accuracy,predictive performance,and preserves the model's ability to generalize.These findings highlight the value of incorporating human expertise into machine learningmodels,offering a practical solution tomitigate data quality challenges and improvemodel reliability in wildfire risk prediction.
文摘BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.
基金funded by the State Key Laboratory Special Fund(2060204)Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2023-I2M-2-001)Strengthen Capacity of Study and Application on the Burden of Disease in Health Care Systems in China:Establishment and Development of Chinese Burden of Disease Research and Dissemination Center(15-208)supported by the China Medical Board(CMB)。
文摘Objective Stroke is the third leading cause of death worldwide,with the highest incidence in Asia,particularly in China,where smoking remains a major risk factor.The smoking prevalence in China is similar to that in Asia.Whether the risk estimates for smoking-related stroke in China and all Asian countries are still unknown which is worth evaluating.Thus,this study aims to compare the Relative Risk(RR)of smoking-attributed stroke among the Chinese and Asian populations.Methods A literature search was conducted from the inception to September 10,2022.Studies meeting the criteria were included.The articles were screened,and related information was extracted.Pooled RRs stratified by smoking status and sex were analyzed,including subgroup analyses for China,other Asian countries,and Asia overall.Finally,publication bias and sensitivity analyses were conducted.Results Thirty-seven articles on the Chinese population and 15 on other Asian populations were included,with a mean Newcastle-Ottawa scale(NOS)score of 7.25.About ever smokers,there had no statistical difference existed in both sexes and females between China and other Asian countries,while the RR of males in other Asian countries[2.31(1.38,3.86)]was higher than that in China[1.21(1.15,1.26)];further subgroup analysis indicated that other Asian countries had higher RR[3.76(3.02,4.67)]in the morbidity subgroup.The RRs of both sexes,males and females,between China and the whole of Asia were not statistically different.As for current and former smokers,no meaningful statistical difference was observed in the pooled RRs of both sexes,males and females,in China,other Asian countries,and all of Asia.Conclusion The RR of males ever smokers in China was smaller than that in other Asian countries due to the few articles of morbidity subgroup,but had no statistical difference with the whole of Asia;other groups of ever smokers,current smokers,and former smokers were not statistically significant with other Asian countries or the whole of Asia.
基金supported by the Jilin Science and Technology Development Talent Special Project,Nos.20240601086RC,23JQ08(all to ZH)YDZJ202502CXJD077+1 种基金JLARS-2025-0802-09YDZJ202501ZYTS706.
文摘Population aging is one of the common challenges in the current world.As people age,the body’s tissues including cells,and molecules inevitably degrade,and their functions gradually decline,causing various age-related diseases like Alzheimer’s disease,osteoporosis,low immunity,glucose and lipid metabolism disorders,and cardiovascular diseases.With the continuous increase of the elderly population,the pressure on the medical industry is increasing.To lower the burden on the medical industry and increase the average age of the elderly,it is vital to explore effective anti-aging materials.Ginseng Radix et Rhizoma(Renshen),as a traditional and precious Chinese medicinal herb,is known as the“king of all herbs”.It is famous for its effects of“tonifying Qi,restoring pulse”(helping with the generation of Qi(the fundamental,vital energy that continuously flows within the body)and the circulation of blood)and strengthening the body,nourishing the spleen and lungs,generating fluids and nourishing blood,calming the mind and improving intelligence.Recently,its anti-aging effect has received increasing attention from modern scientific research.This study summarizes the pharmacological effects of the main active ingredients of Renshen(ginsenosides,polysaccharides,etc.)on resisting aging,including preventing neuroaging,suppressing skin aging,mitigating ovarian aging,inhibiting osteoporosis and arthritis,enhancing the immune system of the elderly,protecting the cardiovascular system,resisting aging-induced fatigue and exerting the anti-tumor effects.Through network pharmacology and molecular docking,the anti-aging active ingredients of Renshen were screened,and the key targets and pathways of anti-aging active ingredients in Renshen were determined.Using network pharmacology,totally 106 drug targets and 3,479 disease targets were screened,and 79 common targets between aging and Renshen were identified.Three core targets were identified in the PPI network,including TNF,AKT1,and IL-1β.Molecular docking was used to obtain further verification.This study emphasizes the potential of Renshen as a source of anti-aging activity,which can be developed into a novel drug for the treatment of age-related diseases.
基金partially supported by the National Natural Science Foundation of China(Nos.11804120,61827822,and 22275072)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030209)+1 种基金Research Projects from Guangzhou(Nos.2023A03J0018 and 2024A04J3712)Fundamental Research Funds for the Central Universities(No.21623412).
文摘Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This study employed a simple and efficient solutionbased process to fabricate nanofibers containing aggregation-induced emission(AIE)dyes.The resulting AIE nanofibers exhibited stable and intense fluorescence,nanosecond fluorescence lifetime,and low-loss light transport when functioning as active waveguides.Additionally,crossed nanofiber intersections exhibited diffraction-limited emission spots.The AIE nanofibers demonstrate efficient and ionspecific fluorescence quenching in response to Ag^(+).These results support the development of sensing units capable of operating in liquid environments or in direct contact with skin or tissues,facilitating real-time monitoring of ion concentrations for personalized healthcare management.
基金funded by STEM-University of South Australia under scholarship programme of Research and Innovation in Science and Technology Project(RISET-Pro)in Ministry of Research,Technology and Higher Edu-cation of the Republic of Indonesia(Kemenristekdikti)with World Bank Loan No.8245-ID.
文摘VIIRS 375 m active fire data(VNP14IMG),the highest spatial resolution available cost-free fire product,were assessed for representing fire in typical degraded tropical peatlands in Indonesia.The results of applying the Tropical Peatland Combustion Algorithm to Landsat-8(ToPeCAl-L8)daytime imagery were utilised as the fire references.To permit the comparison of non-simultaneous VNP14IMG and ToPeCAl-L8,peatland fire propagation speeds resulting from previous study using TET-1 data in Central Kalimantan’s peatlands were utilised.Most peatland fires were still within 750 m from their source over 15 h under uniform conditions,except for very large fires.The detection rates of nighttime VNP14IMG compared with ToPeCAl-L8 showed about 80%agreement for small fire areas(<14 ha).For fires larger than 14 ha,a dissolved 375 m buffer(cluster buffer)of VNP14IMG active fires with an integration of nighttime and daytime acquisitions,produced a probability of detection up to 90%.These results generated a recommendation for implementing cluster buffer analysis and integration of nighttime and daytime analysis of VNP14IMG data for better accuracy in fire detection for ground fire management.They also demonstrate the utility of the ToPeCAl-L8 algorithm with VIIRS 375 m active fire data.
基金financially supported by the National Natural Science Foundation(No 31470657)Fundamental Research Funds for the Central Universities(No 2572015DA01)
文摘Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon (SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing'an Mountains (Greater Xing'an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years (2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008 (p < 0.05). The correlations between active organic carbon and environmental factors such as water content, pH value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance.
文摘Physical inactivity has been identified as one of the leading causes of many chronic diseases such as cardiovascular disease,type 2 diabetes,and obesity.Technology such as video games plays a complicated role in physical inactivity—much like a double-edged sword.Traditionally,video games have contributed to the epidemic of physical inactivity and have
基金the National Key Research and Development Program of China(2022YFB3504503)the National Natural Science Foundation of China(52274355)the Gansu Province Science and Technology Major Special Project,China(22ZD6GD061).
文摘Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synthesized by pyrolysis was used as the precipitant to prepare La(OH)_(3).The species distribution of LaCl_(3)and LaCl_(3)-MgCl_(2)mixed system solution was calculated,and the kinetic analysis of the precipi-tation process was carried out to confirm the key factors influencing the precipitation of La(OH)_(3).The results show that La(OH)_(3)with D_(50)of 5.57μm,a specific surface area of 25.70 m^(2)/g,a rod-like shape,and MgO content of 0.044 wt%,was successfully prepared by adding active MgO.The precipitation ratio of La reaches 99.92%.The La(OH)_(3)precipitation is controlled by the diffusion process.The activity of MgO has a significant influence on MgO content in the precipitate.The preparation of La(OH)_(3)by active MgO provides a potential way for an eco-friendly preparation method of rare earth.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the Special Funds Project for the Transformation of Scientific and Technological Achievements of Jiangsu Province,China(No.BA2023039)+1 种基金the National Natural Science Foundation of China(No.52075262)the Fundamental Research Funds for the Central Universities,China(No.30922010706).
文摘The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses both matched and mismatched disturbances is formulated.Due to the fact that only position information can be measured,a linear Extended State Observer(ESO)is introduced to estimate unknown states and matched disturbances,while a dedicated disturbance observer is constructed to estimate mismatched disturbances.Different from the traditional observer results,the design of the disturbance observer used in this study is carried out under the constraint of output feedback.Furthermore,an output feedback nonlinear controller is proposed leveraging the aforementioned observers to achieve accurate trajectory tracking.To mitigate the inherent differential explosion problem of the traditional backstepping framework,a finite-time stable command filter is incorporated.Simultaneously,considering transient filtering errors,a set of error compensation signals are designed to counter their negative impact effectively.Theoretical analysis affirms that the proposed control strategy ensures the boundedness of all signals within the closed-loop system.Additionally,under the specific condition of only time-invariant disturbances in the system,the conclusion of asymptotic stability is established.Finally,the algorithm’s efficacy is validated through comparative experiments.
基金supported by the Fundamental Research Funds for the Central Public Welfare Research Institutes,China(Grant Nos.:ZZ16-YQ-037,JIPY2023003,and JJPY2022022)China Academy of Chinese Medical Sciences(CACMS)Innovation Fund(Grant No.:CI2021A00601).
文摘In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach.In 2022,Escherichia coli,a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence,emerged as the predominant pathogenic bacterium in China.The rapid emergence of antibiotic-resistant E.coli strains has rendered antibiotics insufficient to fight E.coli infections.Traditional Chinese medicine(TCM)has made remarkable contributions to the health of Chinese people for thousands of years,and its significant therapeutic effects have been proven in clinical practice.In this paper,we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E.coli infections.First of all,this review introduces the classification,antibiotic resistance characteristics and mechanisms of E.coli.Then,the TCM formulas and extracts are listed along with their active ingredients against E.coli,including extraction solution,minimum inhibitory concentration(MIC),and the antibacterial mechanisms.In addition,there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E.coli infections,and we provide a summary of this evidence and its underlying mechanisms.In conclusion,we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E.coli infections.We hold the opinion that TCM will play an important role in global health,pharmaceutical development,and livestock farming in the future.
基金supported by NSFC(Grant No.52202265,52302004,52472010,62434010)the Taishan Scholars Program of Shandong Province(tsqn202306330)+1 种基金Shenzhen Science and Technology Program(JCYJ20230807094009018)Xiaomi Young Talents Program(2023XM06).
文摘Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金supported by the National Science and Technology Major Project,China,the China Scholarship Council(No.202306290109)National Natural Science Foundation of China(Nos.52472456 and 52361165620)。
文摘This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration reduction characteristics are proposed to facilitate the design of the AESDFD.To achieve this,the nonlinear friction force is initially represented as equivalent stiffness and damping coefficients,based on the ball-plate friction model.Second,three evaluation parameters—optimal slipping displacement,loss factor,and controllability—are proposed to reveal the vibration reduction characteristics of the AESDFD,alongside determining the optimal normal force.Subsequently,the finite element method,in conjunction with the ball-plate friction model,is introduced to formulate the governing equation of a low-pressure rotor system equipped with AESDFDs.The steady-state responses of the AESDFDs-rotor system are solved using the harmonic balance method combined with an efficient iteration method.Finally,the solutions are validated on the AESDFDs-rotor system both numerically and experimentally.The results indicate that controllability effectively assesses the vibration reduction performance of the AESDFD and is relatively insensitive to variations in low normal force.Away from the critical speed,the AESDFD suppresses vibration by altering the resonance position of the rotor system through its stiffness coefficient.Near the critical speed,vibration reduction is achieved primarily through energy dissipation by the damping coefficient.If the loss factor is less than one,the stiffness coefficient can diminish the vibration reduction effect of the damping coefficient.Notably,the optimal normal force of the AESDFD achieves optimal vibration reduction effect.This study reveals that changes in rotor system unbalance do not affect the vibration reduction characteristics of the AESDFD,with the same upper limit to the vibration reduction effect of the AESDFD.
基金financially supported by Shenzhen Science and Technology Program(Nos.JSGG20220831105002005 and KJZD20231025152759002)the National Natural Science Foundation of China(Nos.52274133 and 523B2101).
文摘Natural gas hydrate(NGH)has a bright future as a clean energy source with huge reserves.Coring is one of the most direct methods for NGH exploration and research.Preserving the in-situ properties of the core as much as possible during the coring process is crucial for the assessment of NGH resources.However,most existing NGH coring techniques cannot preserve the in-situ temperature of NGH,leading to distortion of the physical properties of the obtained core,which makes it difficult to effectively guide NGH exploration and development.To overcome this limitation,this study introduces an innovative active temperature-preserved coring method for NGH utilizing phase change materials(PCM).An active temperature-preserved corer(ATPC)is designed and developed,and an indoor experimental system is established to investigate the heat transfer during the coring process.Based on the experimental results under different environment temperatures,a heat transfer model for the entire ATPC coring process has been established.The indoor experimental results are consistent with the theoretical predictions of the heat transfer model,confirming its validity.This model has reconstructed the temperature changes of the NGH core during the coring process,demonstrating that compared to the traditional coring method with only passive temperature-preserved measures,ATPC can effectively reduce the core temperature by more than 5.25℃.With ATPC,at environment temperatures of 15,20,25,and 30℃,the duration of low-temperature state for the NGH core is 53.85,32.87,20.32,and 11.83 min,respectively.These findings provide new perspectives on temperature-preserving core sampling in NGH and provide technical support for exploration and development in NGH.
基金supported by the National Natural Science Foundation of China(Nos.52177059 and 52407064).
文摘Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.