This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is...This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.展开更多
In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance ...In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance flow. A CFD code integrated with dense-correction-based 3D Reynolds-averaged Navier-Stokes equations together with the well-proven Reynolds stress model (RSM) is adopted. The variation of specific heat is taken into consideration. The effects of jet-flow on the tip clearance flow are simulated ...展开更多
The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body ...The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.展开更多
Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and se...Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and semi-active control systems, have been investigated to overcome this problem. This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels. The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm. The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure. The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records. Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.展开更多
For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and...For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and noise for car body panels is useful for engineering.Analysis and active control of booming noise in car is researched by using a new active damping vibration reduction technology named smart constrained layer damping(SCLD).According to the vibration characters of body roof,an optimal placement of actuators is distributed.Based on dSPACE hardware in loop environment,an adaptive active control system is designed.Selecting vibration signals of engine mounting point as the reference input of adaptive controller,an active control experiment of booming noise for mini-car is carried out.Experimental results show that,when the engine speed is at 3700 RPM and4250RPM,the interior booming noise decreases 4.2dB(A),and 3.5dB(A) separately.It proposes new methods and techniques for intelligent control of car body NVH in the future.展开更多
The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the ...The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.展开更多
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is a...An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.展开更多
The hot jet injection is utilized to actively control the oblique detonation wave,such as initiating and stabilizing an oblique detonation wave at a desired position that is shorter than the length of induction zone,a...The hot jet injection is utilized to actively control the oblique detonation wave,such as initiating and stabilizing an oblique detonation wave at a desired position that is shorter than the length of induction zone,and adjust the height of the oblique detonation wave at the exit of combustor when the oblique detonation wave engine is working on off-design flight conditions.The fifth order Weighted Essentially Non-Oscillatory(WENO)scheme and a two-step reversible reaction mechanism of the stoichiometric H_2/Air are adopted in the simulations.With the help of hot jet injection,the transition from inert oblique shock wave to the oblique detonation wave immediately occurs near the position of hot jet injection,and consequently the length of combustor can be reduced.The angle of oblique detonation wave also decreases as the hot jet injection approaches the nose of wedge.Additionally,the height of the oblique detonation wave at the exit of combustor can be flexibly adjusted,and also depends on the injection position and the strength of the hot jet.If the velocity of the hot jet is too weak to directly trigger the overall oblique detonation wave at the position of injection,increasing the injection pressure will improve the strength of the hot jet and results in a successful transition.展开更多
In this paper, the characteristics of forces in active control systems connected to adjacent levels of a building are analyzed. The following characteristics are observed: (1) active control can provide significant...In this paper, the characteristics of forces in active control systems connected to adjacent levels of a building are analyzed. The following characteristics are observed: (1) active control can provide significantly superior supplemental damping to a building, but causes a small frequency shift; (2) the linear quadratic regulator (LQR)-based control force is composed of an elastic restoring force component and a damping force component, where the damping force is almost identical to the total control force, however, the elastic restoring force is very small; and (3) the active control forces prevent mction most of the time during the entire control process. These three characteristics imply that active control systems connected to adjacent levels of a building behave like passive damping devices with adjustable parameters, namely damping characteristics in an active control, which is the mechanism used by semi-active control devices to reach similar performance as active control systems. Two indices are defined to quantify the damping characteristics of control forces in active control systems. These two indices can also be used to quantify the capacity of semi-active control to achieve the perfonrlance of active control. Based on the above observations, two principles are founded for optimization of parameters of semi-active control devices and passive dampers. The first is that the maximum output force of a semi-active or passive device to be designed is identical to an active device, called "design principle". The other is the response equivalent principle, which states that the response of a building with semi-active or passive devices is the same as with active devices when the same maximum output force is applied. The design procedure for semi-active control devices and passive dampers is described in detail. Finally, numerical simulations of two benchmark problems is conducted to demonstrate the damping characteristics of active control and investigate the capacity of semi-active control to achieve the same performance as active control.展开更多
The one-dimensional monoatomic lattice chain connected by nonlinear springs is investigated, and the asymptotic solution is obtained through the Lindstedt-Poincar′e perturbation method. The dispersion relation is der...The one-dimensional monoatomic lattice chain connected by nonlinear springs is investigated, and the asymptotic solution is obtained through the Lindstedt-Poincar′e perturbation method. The dispersion relation is derived with the consideration of both the nonlocal and the active control effects. The numerical results show that the nonlocal effect can effectively enhance the frequency in the middle part of the dispersion curve.When the nonlocal effect is strong enough, zero and negative group velocities will be evoked at different points along the dispersion curve, which will provide different ways of transporting energy including the forward-propagation, localization, and backwardpropagation of wavepackets related to the phase velocity. Both the nonlinear effect and the active control can enhance the frequency, but neither of them is able to produce zero or negative group velocities. Specifically, the active control enhances the frequency of the dispersion curve including the point at which the reduced wave number equals zero, and therefore gives birth to a nonzero cutoff frequency and a band gap in the low frequency range. With a combinational adjustment of all these effects, the wave propagation behaviors can be comprehensively controlled, and energy transferring can be readily manipulated in various ways.展开更多
The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated v...The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.展开更多
This paper is devoted to investigate the flutter and thermal buckling properties of the functionally graded piezoelectric material(FGPM)plate in supersonic airflow,and the active flutter control is carried out under d...This paper is devoted to investigate the flutter and thermal buckling properties of the functionally graded piezoelectric material(FGPM)plate in supersonic airflow,and the active flutter control is carried out under different temperature fields.The piezoelectric material component of the FGPM plate has gradient changes along the thickness,such as piezoelectricity and dielectric coefficients.The supersonic piston theory is used to evaluate the aerodynamic pressure.Based on the first-order shear deformation theory and Hamilton’s principle with the assumed mode method,the equation of motion of the structural system is deduced.The effect of aerodynamic pressure on the frequency and damping ratio of the FGPM plate is analyzed.Moreover,the flutter and thermal buckling properties of the FGPM and pure metal plates are compared to show the superior aerothermoelastic properties of the FGPM plates.The influences of volume fraction exponent and temperature on the flutter and thermal buckling properties of the FGPM plate are also examined in detail.The LQR controller is adopted to achieve active flutter control.The simulation results show that the present control method can largely improve dynamic stability of the FGPM plate in supersonic airflow and high-temperature environment.展开更多
Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low orde...Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.展开更多
The internal balance technique is effective for model reduction in flexible structures, especially those with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from...The internal balance technique is effective for model reduction in flexible structures, especially those with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from the physical sensor readings, research so far on this topic has been mostly theoretic and little on experiment or engineering applications. This paper, by working on a DSP TMS320F2812-based experiment system with a flexible plate and bringing forward an approximating approach to accessing the internal balance modal coordinates, studies the internal balance method theoretically as well as experimentally, and further designs an active controller based on the reduced model. Simulation and test results have proven the proposed approximating approach feasible and effective, and the designed controller successful in restraining the plate vibration.展开更多
As a typical fluid-solid interaction problem,vortex-induced vibration(VIV)is common in engineering,so it is vital to study its control mechanism.Numerical simulations of the active control of VIV of a cylinder are car...As a typical fluid-solid interaction problem,vortex-induced vibration(VIV)is common in engineering,so it is vital to study its control mechanism.Numerical simulations of the active control of VIV of a cylinder are carried out in this study.The splitter plate with harmonic oscillation is used as the control device for the dynamic response of the cylinder.The displacement response,lift and drag coefficient,vibration frequency of the cylinder,energy efficiency of control strategy,and characteristics of the flow field are widely analyzed to reveal the physical mechanism of the control system.The results show that the displacement response of the cylinder can be limited in a small range by the control without feedback in most cases except for high reduced velocity.In addition,the control strategy can be changed through feedback control to keep much superior control effects at the high reduced velocity.The oscillatory splitter plate delays the vortex shedding of shear layers generated on the cylinder,the wake vortices with opposite sense of rotation are paralleled with the streamwise direction,and crosswise distances of them are reduced.Thus,the lift on the cylinder is greatly decreased due to the modification of the flow pattern induced by the oscillatory splitter plate.展开更多
An experimental investigation was performed for active control of coherent structure bursting in the near-wall region of the turbulent boundary layer. By means of synchronous and asynchronous vibrations with double pi...An experimental investigation was performed for active control of coherent structure bursting in the near-wall region of the turbulent boundary layer. By means of synchronous and asynchronous vibrations with double piezoelectric vibrators, the influence of periodic vibration of the double piezoelectric vibrators on the mean velocity profile, drag reduction rate, and coherent structure bursting is analyzed at Reo = 2766. The case with 100 V/160 Hz-ASYN is superior to other conditions in the experiment and a relative drag reduction rate of 18.54% is exciting. Asynchronous vibration is more effective than synchronous vibration in drag reduction at the same voltage and frequency. In all controlled cases, coherent structures at large scales are regulated while the small-scale structures are stimulated. The fluctuating velocity increases significantly. A periodic regulating effect on the coherent structure can be seen in the ASYN control conditions at the frequency of 160 Hz.展开更多
A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function...A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function in such a system as with multi disturbance, multi mounts, passive isolators and actuators is deduced. By means of the numerical simulation method, the influence of actuators on power flow transmission characteristic is studied. And as a conclusion, the passive active synthetic control strategy of power flow is summarized.展开更多
This paper presents an analytical investigation into activevibration control of flexible redundant robot manipulators featuringpiezoelectric actuators and strain gage sensors. The state-sp- aceexpression of the discre...This paper presents an analytical investigation into activevibration control of flexible redundant robot manipulators featuringpiezoelectric actuators and strain gage sensors. The state-sp- aceexpression of the discrete time-varying dynamic system is developedfirstly. The LQR optimal control law is presented based upon thediscrete Minimum Principle. Moreover, an approximate method isproposed for estimating the state information of the system. Finally,a planar 3R flexible redundant manipulator is utilized as anillustration example. The simulation results show that the dy- namicperformance of the manipulator has been improved significantly.展开更多
The paraboloidal membrane shell with free boundary condition is actively controlled using photostrictive actuators which can provide contactless actuation under the illumination of ultraviolet light. The governing equ...The paraboloidal membrane shell with free boundary condition is actively controlled using photostrictive actuators which can provide contactless actuation under the illumination of ultraviolet light. The governing equations of the paraboloidal shell laminated with paired photostrictive actuators are established based on membrane approximation. The modal control actions of meridional/circumferential actuators are respectively formulated and evaluated by case studies. Constant light intensity related to the velocity of the shell is adopted, and then the governing equations are written in a closed-loop form which can be solved with Newmark-β method. Considering the multi-field coupling behavior of photostrictive actuators, time histories of transverse displacement and control light intensity are simulated and evaluated. The results show that photostrictive actuators can effectively control the vibration of the paraboloidal membrane shell, and the photostrictive actuators oriented along circumferential direction can give better control effect than photostrictive actuators placed along the meridional direction.展开更多
A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i...A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.展开更多
基金Dean Research&Consultancy under Grant No.Dean (R&C)/2020-21/1155。
文摘This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.
文摘In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance flow. A CFD code integrated with dense-correction-based 3D Reynolds-averaged Navier-Stokes equations together with the well-proven Reynolds stress model (RSM) is adopted. The variation of specific heat is taken into consideration. The effects of jet-flow on the tip clearance flow are simulated ...
文摘The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.
文摘Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and semi-active control systems, have been investigated to overcome this problem. This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels. The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm. The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure. The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records. Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.
基金Supported by the State Key Development Program for Basic Research of China(No.2010CB736104)the National High Technology Research and Development Program of China(No.2012AA111803)
文摘For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and noise for car body panels is useful for engineering.Analysis and active control of booming noise in car is researched by using a new active damping vibration reduction technology named smart constrained layer damping(SCLD).According to the vibration characters of body roof,an optimal placement of actuators is distributed.Based on dSPACE hardware in loop environment,an adaptive active control system is designed.Selecting vibration signals of engine mounting point as the reference input of adaptive controller,an active control experiment of booming noise for mini-car is carried out.Experimental results show that,when the engine speed is at 3700 RPM and4250RPM,the interior booming noise decreases 4.2dB(A),and 3.5dB(A) separately.It proposes new methods and techniques for intelligent control of car body NVH in the future.
基金The National Natural Science Foundation of China(No.50975047)
文摘The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.
基金This work was partly supported by the Japan Society for the Promotion of Science (JSPS) for RONPAKU program by Foundation for University Key Teacher by the Ministry of Education of China
文摘An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.
基金supported by the National Natural Science Foundation of China(Nos.11572258,91441201)NSAF(No.U1730134)+3 种基金Science Challenge Project(No.TZ2016001)National Key Laboratory for Shock Wave and Detonation Physics Research Foundation(No.6142A0304020617)the Fundamental Research Funds for the Central Universities(No.3102017Ax006)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)(No.KFJJ1913M)。
文摘The hot jet injection is utilized to actively control the oblique detonation wave,such as initiating and stabilizing an oblique detonation wave at a desired position that is shorter than the length of induction zone,and adjust the height of the oblique detonation wave at the exit of combustor when the oblique detonation wave engine is working on off-design flight conditions.The fifth order Weighted Essentially Non-Oscillatory(WENO)scheme and a two-step reversible reaction mechanism of the stoichiometric H_2/Air are adopted in the simulations.With the help of hot jet injection,the transition from inert oblique shock wave to the oblique detonation wave immediately occurs near the position of hot jet injection,and consequently the length of combustor can be reduced.The angle of oblique detonation wave also decreases as the hot jet injection approaches the nose of wedge.Additionally,the height of the oblique detonation wave at the exit of combustor can be flexibly adjusted,and also depends on the injection position and the strength of the hot jet.If the velocity of the hot jet is too weak to directly trigger the overall oblique detonation wave at the position of injection,increasing the injection pressure will improve the strength of the hot jet and results in a successful transition.
基金National Fundamental Research Program (973) Under Grant No. 2007CB714204the R & D Program Under Grant No. 2006BAJ03B06NSFC Under Grant No. 90815027
文摘In this paper, the characteristics of forces in active control systems connected to adjacent levels of a building are analyzed. The following characteristics are observed: (1) active control can provide significantly superior supplemental damping to a building, but causes a small frequency shift; (2) the linear quadratic regulator (LQR)-based control force is composed of an elastic restoring force component and a damping force component, where the damping force is almost identical to the total control force, however, the elastic restoring force is very small; and (3) the active control forces prevent mction most of the time during the entire control process. These three characteristics imply that active control systems connected to adjacent levels of a building behave like passive damping devices with adjustable parameters, namely damping characteristics in an active control, which is the mechanism used by semi-active control devices to reach similar performance as active control systems. Two indices are defined to quantify the damping characteristics of control forces in active control systems. These two indices can also be used to quantify the capacity of semi-active control to achieve the perfonrlance of active control. Based on the above observations, two principles are founded for optimization of parameters of semi-active control devices and passive dampers. The first is that the maximum output force of a semi-active or passive device to be designed is identical to an active device, called "design principle". The other is the response equivalent principle, which states that the response of a building with semi-active or passive devices is the same as with active devices when the same maximum output force is applied. The design procedure for semi-active control devices and passive dampers is described in detail. Finally, numerical simulations of two benchmark problems is conducted to demonstrate the damping characteristics of active control and investigate the capacity of semi-active control to achieve the same performance as active control.
基金Project supported by the National Natural Science Foundation of China(Nos.11532001and 11621062)the Fundamental Research Funds for the Central Universities of China(No.2016XZZX001-05)
文摘The one-dimensional monoatomic lattice chain connected by nonlinear springs is investigated, and the asymptotic solution is obtained through the Lindstedt-Poincar′e perturbation method. The dispersion relation is derived with the consideration of both the nonlocal and the active control effects. The numerical results show that the nonlocal effect can effectively enhance the frequency in the middle part of the dispersion curve.When the nonlocal effect is strong enough, zero and negative group velocities will be evoked at different points along the dispersion curve, which will provide different ways of transporting energy including the forward-propagation, localization, and backwardpropagation of wavepackets related to the phase velocity. Both the nonlinear effect and the active control can enhance the frequency, but neither of them is able to produce zero or negative group velocities. Specifically, the active control enhances the frequency of the dispersion curve including the point at which the reduced wave number equals zero, and therefore gives birth to a nonzero cutoff frequency and a band gap in the low frequency range. With a combinational adjustment of all these effects, the wave propagation behaviors can be comprehensively controlled, and energy transferring can be readily manipulated in various ways.
基金supported by the National Natural Science Foundation of China(Nos.11402088 and 51376062)the Fundamental Research Funds for the Central Universities(No.2014MS33)State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS15005)
文摘The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.
基金This work was supported by the National Natural Science Foundation of China(Nos.11502159 and 11761131006)the Fundamental Research Funds for the Central Universities.
文摘This paper is devoted to investigate the flutter and thermal buckling properties of the functionally graded piezoelectric material(FGPM)plate in supersonic airflow,and the active flutter control is carried out under different temperature fields.The piezoelectric material component of the FGPM plate has gradient changes along the thickness,such as piezoelectricity and dielectric coefficients.The supersonic piston theory is used to evaluate the aerodynamic pressure.Based on the first-order shear deformation theory and Hamilton’s principle with the assumed mode method,the equation of motion of the structural system is deduced.The effect of aerodynamic pressure on the frequency and damping ratio of the FGPM plate is analyzed.Moreover,the flutter and thermal buckling properties of the FGPM and pure metal plates are compared to show the superior aerothermoelastic properties of the FGPM plates.The influences of volume fraction exponent and temperature on the flutter and thermal buckling properties of the FGPM plate are also examined in detail.The LQR controller is adopted to achieve active flutter control.The simulation results show that the present control method can largely improve dynamic stability of the FGPM plate in supersonic airflow and high-temperature environment.
基金National Natural Science Foundation of China (10902082)New Faculty Research Foundation of XJTUthe Fundamental Research Funds for the Central Universities (xjj20100126)
文摘Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.
基金supported by the Key Project (No. 11132001)the General Projects (Nos. 11072146 and 11002087) of the National Natural Science Foundation of China
文摘The internal balance technique is effective for model reduction in flexible structures, especially those with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from the physical sensor readings, research so far on this topic has been mostly theoretic and little on experiment or engineering applications. This paper, by working on a DSP TMS320F2812-based experiment system with a flexible plate and bringing forward an approximating approach to accessing the internal balance modal coordinates, studies the internal balance method theoretically as well as experimentally, and further designs an active controller based on the reduced model. Simulation and test results have proven the proposed approximating approach feasible and effective, and the designed controller successful in restraining the plate vibration.
基金supported by the National Natural Science Foundation of China(Grant No.11872174)the Fundamental Research Funds for the Central Universities(Grant No.B200202236)the Key Laboratory of Port,Waterway&Sedimentation Engineering Ministry of Communications,PRC(Grant No.Yk220001-2).
文摘As a typical fluid-solid interaction problem,vortex-induced vibration(VIV)is common in engineering,so it is vital to study its control mechanism.Numerical simulations of the active control of VIV of a cylinder are carried out in this study.The splitter plate with harmonic oscillation is used as the control device for the dynamic response of the cylinder.The displacement response,lift and drag coefficient,vibration frequency of the cylinder,energy efficiency of control strategy,and characteristics of the flow field are widely analyzed to reveal the physical mechanism of the control system.The results show that the displacement response of the cylinder can be limited in a small range by the control without feedback in most cases except for high reduced velocity.In addition,the control strategy can be changed through feedback control to keep much superior control effects at the high reduced velocity.The oscillatory splitter plate delays the vortex shedding of shear layers generated on the cylinder,the wake vortices with opposite sense of rotation are paralleled with the streamwise direction,and crosswise distances of them are reduced.Thus,the lift on the cylinder is greatly decreased due to the modification of the flow pattern induced by the oscillatory splitter plate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11332006,11732010,11572221,and 11502066)
文摘An experimental investigation was performed for active control of coherent structure bursting in the near-wall region of the turbulent boundary layer. By means of synchronous and asynchronous vibrations with double piezoelectric vibrators, the influence of periodic vibration of the double piezoelectric vibrators on the mean velocity profile, drag reduction rate, and coherent structure bursting is analyzed at Reo = 2766. The case with 100 V/160 Hz-ASYN is superior to other conditions in the experiment and a relative drag reduction rate of 18.54% is exciting. Asynchronous vibration is more effective than synchronous vibration in drag reduction at the same voltage and frequency. In all controlled cases, coherent structures at large scales are regulated while the small-scale structures are stimulated. The fluctuating velocity increases significantly. A periodic regulating effect on the coherent structure can be seen in the ASYN control conditions at the frequency of 160 Hz.
文摘A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function in such a system as with multi disturbance, multi mounts, passive isolators and actuators is deduced. By means of the numerical simulation method, the influence of actuators on power flow transmission characteristic is studied. And as a conclusion, the passive active synthetic control strategy of power flow is summarized.
基金National Natural Science F oundation of China(5 9975 0 0 1)
文摘This paper presents an analytical investigation into activevibration control of flexible redundant robot manipulators featuringpiezoelectric actuators and strain gage sensors. The state-sp- aceexpression of the discrete time-varying dynamic system is developedfirstly. The LQR optimal control law is presented based upon thediscrete Minimum Principle. Moreover, an approximate method isproposed for estimating the state information of the system. Finally,a planar 3R flexible redundant manipulator is utilized as anillustration example. The simulation results show that the dy- namicperformance of the manipulator has been improved significantly.
基金Supported by National Natural Science Foundation of China (No. 50705017)the "111 Project" (No. B07018)
文摘The paraboloidal membrane shell with free boundary condition is actively controlled using photostrictive actuators which can provide contactless actuation under the illumination of ultraviolet light. The governing equations of the paraboloidal shell laminated with paired photostrictive actuators are established based on membrane approximation. The modal control actions of meridional/circumferential actuators are respectively formulated and evaluated by case studies. Constant light intensity related to the velocity of the shell is adopted, and then the governing equations are written in a closed-loop form which can be solved with Newmark-β method. Considering the multi-field coupling behavior of photostrictive actuators, time histories of transverse displacement and control light intensity are simulated and evaluated. The results show that photostrictive actuators can effectively control the vibration of the paraboloidal membrane shell, and the photostrictive actuators oriented along circumferential direction can give better control effect than photostrictive actuators placed along the meridional direction.
文摘A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.