Passiflora incarnata L.,commonly known as passionflower,is traditionally cultivated as an ornamental plant but has demonstrated diverse therapeutic potential.Its pharmacological effects are attributed to bioactive com...Passiflora incarnata L.,commonly known as passionflower,is traditionally cultivated as an ornamental plant but has demonstrated diverse therapeutic potential.Its pharmacological effects are attributed to bioactive compounds such as flavonoids and alkaloids,which influence multiple biological pathways.This review aims to summarise and critically analyse recent findings on the pharmacological properties of Passiflora incarnata L.,focusing on its neuropsychiatric,antioxidant,antimicrobial,and anticancer activities.A targeted literature search was conducted in PubMed,Scopus,Web of Science,and Google Scholar for peer-reviewed publications between 2000 to 2025.Relevant articles were screened,and a more appropriate article related to the objective of the review was selected.Some classical papers are also cited as per the requirement of the topic.Passiflora incarnata L.showed multifunctional medicinal properties with various applications in neuropsychiatry,oxidative stress management,antimicrobial agent,and as an anticancer agent.The U.S.Food and Drug Administration categorizes passionflower extracts as“generally recognized as safe”.However,most evidence remains preclinical,with methodological variation limiting generalisation.Standardised formulation,robust clinical trials,and in-depth in vivo studies are essential to establish its therapeutic relevance and safety in modern medicine.展开更多
Active inflammation in“inactive”progressive multiple sclerosis:Traditionally,the distinction between relapsing-remitting multiple sclerosis and progressive multiple sclerosis(PMS)has been framed as an inflammatory v...Active inflammation in“inactive”progressive multiple sclerosis:Traditionally,the distinction between relapsing-remitting multiple sclerosis and progressive multiple sclerosis(PMS)has been framed as an inflammatory versus degenerative dichotomy.This was based on a broad misconception regarding essentially all neurodegenerative conditions,depicting the degenerative process as passive and immune-independent occurring as a late byproduct of active inflammation in the central nervous system(CNS),which is(solely)systemically driven.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking rec...BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.展开更多
BACKGROUND Postoperative delirium(POD)is a common and serious complication in surgical patients,particularly older adults.Alterations in cholinergic function have been implicated in its pathophysiology.AIM To evaluate...BACKGROUND Postoperative delirium(POD)is a common and serious complication in surgical patients,particularly older adults.Alterations in cholinergic function have been implicated in its pathophysiology.AIM To evaluate the association between preoperative serum cholinesterase(ChE)activity—specifically butyrylcholinesterase(BuChE)and acetylcholinesterase(AChE)—and the risk of POD in adult surgical patients in a meta-analysis.METHODS A systematic search was conducted in PubMed,EMBASE,and Web of Science up to March 28,2025 for studies reporting preoperative serum BuChE or AChE activity in relation to subsequent POD incidence.Standardized mean differences(SMDs)and odds ratios(ORs)with 95%confidence intervals(CIs)were pooled using random-effects models.Subgroup and sensitivity analyses were performed based on follow-up duration and analytic models.RESULTS Thirteen studies(n=2730 patients)were included.Patients who developed POD had significantly lower preoperative BuChE activity than those who did not(SMD=-0.28;95%CI:-0.39 to-0.16;I²=18%).Higher BuChE activity was associated with a reduced risk of POD(OR per 100 unit increment=0.97;95%CI:0.95-0.99;I2=0%).In contrast,pooled AChE activity did not differ significantly between POD and non-POD groups(SMD=-0.25;95%CI:-0.53 to 0.03;P=0.08;I2=80%),and the ORs per 1 unit increment in AChE activity were not statistically significant(OR=0.98;95%CI:0.95-1.01).CONCLUSION Lower preoperative serum BuChE activity is associated with an increased risk of POD in adults undergoing surgery.BuChE activity may serve as a potential preoperative biomarker for POD risk stratification.展开更多
BACKGROUND Major depressive disorder(MDD)and obesity(OB)are bidirectionally comorbid conditions with common neurobiological underpinnings.However,the neurocognitive mechanisms of their comorbidity remain poorly unders...BACKGROUND Major depressive disorder(MDD)and obesity(OB)are bidirectionally comorbid conditions with common neurobiological underpinnings.However,the neurocognitive mechanisms of their comorbidity remain poorly understood.AIM To examine regional abnormalities in spontaneous brain activity among patients with MDD-OB comorbidity.METHODS This study adopted a regional homogeneity(ReHo)analysis of resting-state functional magnetic resonance imaging.The study included 149 hospital patients divided into four groups:Patients experiencing their first episode of drug-naive MDD with OB,patients with MDD without OB,and age-and sex-matched healthy individuals with and without OB.Whole-brain ReHo analysis was conducted using SPM12 software and RESTplus toolkits,with group comparisons via ANOVA and post-hoc tests.Correlations between ReHo values and behavioral measures were examined.RESULTS ANOVA revealed significant whole-brain ReHo differences among the four groups in four key regions:The left middle temporal gyrus(MTG.L),right cuneus,left precuneus,and left thalamus.Post-hoc analyses confirmed pairwise differences between all groups across these regions(P<0.05).OB was associated with ReHo alterations in the MTG.L,right cuneus,and left thalamus,whereas abnormalities in the precuneus suggested synergistic pathological mechanisms between MDD and OB.Statistically significant correlations were found between the drive and fun-seeking dimensions of the behavioral activation system,as well as behavioral inhibition and the corresponding ReHo values.CONCLUSION Our findings provide novel evidence for the neuroadaptive mechanisms underlying the MDD-OB comorbidity.Further validation could lead to personalized interventions targeting MTG.L hyperactivity and targeting healthy food cues.展开更多
Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminog...Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminogen activator may come into contact with brain tissue.Therefore,a thorough assessment of its safety is required.In this study,we established a mouse model of intracerebral hemorrhage induced by type VII collagenase.We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage,reduced pathological damage,and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma.In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin,the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis,autophagy,and endoplasmic reticulum stress.Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons.Moreover,the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis,autophagy,and endoplasmic reticulum stress.Furthermore,to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects,various inhibitors were used to target distinct domains.It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonineprotein kinase/mammalian target of rapamycin pathway.These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage,possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.展开更多
Concerned that fewer than 20%of adolescents meet the World Health Organization(WHO)’s physical activity(PA)guidelines of engaging in≥60 min each day of the week of moderate-to-vigorous PA(MVPA),classifying them as i...Concerned that fewer than 20%of adolescents meet the World Health Organization(WHO)’s physical activity(PA)guidelines of engaging in≥60 min each day of the week of moderate-to-vigorous PA(MVPA),classifying them as insufficiently active,1 Araujo et al.2 sought to identify the global prevalence of adolescents reporting less frequent MVPA(≥60 min per day of MVPA≥1 days per week)and identify differences in this prevalence by age,gender.展开更多
Background:This study investigated the phenolic profile,antioxidant capacity,antibacterial effect,and antihemolytic activity of nettle leaves from two understudied Algerian species,Urtica pilulifera and Urtica urens.M...Background:This study investigated the phenolic profile,antioxidant capacity,antibacterial effect,and antihemolytic activity of nettle leaves from two understudied Algerian species,Urtica pilulifera and Urtica urens.Methods:Urtica pilulifera and Urtica urens leaves extracts were prepared by maceration using methanol and distilled water respectively.Their phytochemical analysis(total phenolic content,flavonoids,hydrolysable and condensed tannins)was determined.The chemical profle of these extracts was performed using ultra-high-performance liquid chromatography diode array detection tandem mass spectrometry.Antioxidant activity(using the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging method),antibacterial activity(using disk diffusion method),and antihemolytic activity were carried out.Results:Results reveal high levels of flavonoids,tannins,alkaloids,and terpenoids.Several classes of compounds were identified in the extracts.Phenolic acid and other acids and their derivatives and flavonoids were detected in the extracts,with 4-O-caffeoyl-quinic acid and 5-O-caffeoyl-quinic acid being the main constituents in both extracts.Caffeic acid was also the main constituent present only in U.urens extract.For antioxidant activity of the methanolic extract of U.pilulifera and the aqueous extract of U.urens,the percentage inhibition value(82.76%and 59.06%)and the half-maximum inhibitory concentration(IC_(50))value(302 and 423μg/mL),respectively,were obtained.Antibacterial activity of nettle extracts(10 mg/mL)demonstrated the sensitivity of pathogenic strain susceptibility.The strongest antibacterial effect on tested strains was found in the aqueous extract of U.urens against Staphylococcus aureus(21±0.41 mm)compared to the methanolic extract of U.pilulifera(16±0.40 mm).The antihemolytic activity in the methanolic and aqueous extracts was 76.26%and 60.67%,respectively.The methanolic extract exhibited exceptional antihemolytic effect,with an IC_(50)value of 327μg/mL,whereas the aqueous extract had an IC_(50)value of 412μg/mL.Conclusions:The study confirms the presence of bioactive substances in the nettle species,including flavonoids and tannins,which possess antioxidant,antibacterial,and antihemolytic properties,and can be processed into food and pharmaceutical products.展开更多
Electrocatalytic nitrate reduction reaction(NitRR)utilizing water as a hydrogen source under ambient conditions represents a highly promising avenue for sustainable ammonia synthesis and environmental remediation.Howe...Electrocatalytic nitrate reduction reaction(NitRR)utilizing water as a hydrogen source under ambient conditions represents a highly promising avenue for sustainable ammonia synthesis and environmental remediation.However,achieving high efficiency and selectivity in NitRR is fundamentally challenged by the complex lifecycle management of active hydrogen derived from water splitting.This review provides a timely and comprehensive analysis centered on the pivotal role and meticulous regulation of active hydrogen throughout the NitRR process.We first elucidate the distinct functions and characteristics of various hydrogen species,followed by a survey of advanced characterization techniques crucial for monitoring the dynamics of active hydrogen.Critically,three core strategies were systematically dissected to modulate the active hydrogen lifecycle:accelerating water activation and dissociation,enhancing the directional transport of hydrogen species,and precisely tuning active hydrogen coupling pathways while suppressing parasitic hydrogen evolution.By consolidating current understanding from both catalyst design and reaction mechanism perspectives,this review offers a hydrogen-centric roadmap and highlights emerging opportunities for rationally engineering advanced NitRR systems.展开更多
In the last decade,the study of pressure in active matter has attracted growing attention due to its fundamental relevance to nonequilibrium statistical physics.Active matter systems are composed of particles that con...In the last decade,the study of pressure in active matter has attracted growing attention due to its fundamental relevance to nonequilibrium statistical physics.Active matter systems are composed of particles that consume energy to sustain persistent motion,which are inherently far from equilibrium.These particles can exhibit complex behaviors,including motility-induced phase separation,clustering,and anomalous stress distributions,motivating the introduction of active swim stress and swim pressure.Unlike in passive fluids,pressure in active systems emerges from momentum flux originating from swim force rather than equilibrium conservative interactions,offering a distinct perspective for understanding their mechanical response.Simple models of active Brownian particles(ABPs)have been employed in theoretical and simulation studies across both dilute and dense regimes,revealing that pressure is a state function and exhibits a nontrivial dependence on density.Together with nonequilibrium statistical concepts such as effective temperature and effective adhesion,pressure offers important insight for understanding behaviors in active matter such as sedimentation equilibrium and motility induced phase separation.Extensions of ABP models beyond their simplest form have underscored the fragility of the pressure-based equation of state,which can break down under factors such as density-dependent velocity,torque,complex boundary geometries and interactions.Building on these developments,this review provides a comprehensive survey of theoretical and experimental advances,with particular emphasis on the microscopic origins of active pressure and the mechanisms underlying the breakdown of the equation of state.展开更多
Today, most people know that physical activity(PA) is beneficial for their health ^(1,2)and aspire to engage in regular PA.^(3,4)However, despite their awareness of the importance of PA, it is evident that the transit...Today, most people know that physical activity(PA) is beneficial for their health ^(1,2)and aspire to engage in regular PA.^(3,4)However, despite their awareness of the importance of PA, it is evident that the transition from intention to action is challenging-a situation that has important public health implications. According to the World Health Organization,^(5)1 person dies every 6 s worldwide from causes related to physical inactivity, which underscores the urgency of addressing this situation.展开更多
This study documents pioneering results in marginal wells in Texas,where the application of RDV-00■restored production through delayed protonic activation catalyzed by reservoir energy.The product,based on RDV■(Vaso...This study documents pioneering results in marginal wells in Texas,where the application of RDV-00■restored production through delayed protonic activation catalyzed by reservoir energy.The product,based on RDV■(Vasoactive Dynamic Reactor)technology,operates via:Controlled protonation of molecular structures;Release of energetic carbocations;Autonomous transformation without external inputs.(a)Case 1(Well#E2-Starr County):Certified as“dry”by RRC(2022)after 48 months at 0 BPD;8 months post-injection of 5 gal RDV-00■(Fluid column:37 bbl;Wellhead pressure:80 psi(vs.0 psi initially)).(b)Case 2(Well#P1-Luling Field):Historical stripper well(0.25-0.5 BPD);23 months of immobilization with 15 gal RDV-00■;Critical results:(1)Initial production:42 BPD(8,400%above baseline);(2)Shut-in wellhead pressure:40 psi(neighboring wells=0-3 psi);(3)Current behavior:Continuous recharge from reservoir(well shut-in due to lack of storage).(c)Technically Significant Observations:(1)First case of self-sustaining reactivation in depleted wells;(2)Mechanism validated by Autonomous pressure generation(0→40-80 psi),and Continuous flow without additional stimulation;(3)No documented precedents in SPE/OnePetro literature to our knowledge.展开更多
The activation of the N≡N triple bond in N_(2) is a fascinating topic in nitrogen chemistry.The transition metals have been demonstrated to effectively modulate the reactivity of N_(2) molecules under high pressure,l...The activation of the N≡N triple bond in N_(2) is a fascinating topic in nitrogen chemistry.The transition metals have been demonstrated to effectively modulate the reactivity of N_(2) molecules under high pressure,leading to nitrogen-rich compounds.However,their use often results in a significant reduction in energy density.In this work,we propose a series of low-enthalpy nitrogen-rich phases in CN_(x)(x=3,...,7)compounds using a first-principles crystal structure search method.The results of calculations reveal that all these CN compounds are assembled from both CN_(4) tetrahedra and N_(x)(x=1,2,or 5)species.Strikingly,we find that the CN_(4) tetrahedron can effectively activate the N≡N bond through weakening of the π orbital of N_(2) under a pressure of 40 GPa,leading to stable CN polynitrides.The robust structural framework of CN polynitrides containing C-N and N-N bonds plays a crucial role in enhancing their structural stability,energy density,and hardness.Among these polynitrides,CN_(6) possesses not only a very high mass density of 3.19 g/cm^(3),but also an ultrahigh energy density of 28.94 kJ/cm^(3),which represents a significant advance in the development of energetic materials using high-pressure methods.This work provides new insights into the mechanism of N_(2) activation under high pressure,and offers a promising pathway to realize high-performance energetic materials.展开更多
To explore the potential utilization of Elaeagnus mollis,we conducted a comprehensive assessment of its phytochemical composition,antioxidant properties,cholinesterase inhibition,and anti-HepG2 cell proliferation acti...To explore the potential utilization of Elaeagnus mollis,we conducted a comprehensive assessment of its phytochemical composition,antioxidant properties,cholinesterase inhibition,and anti-HepG2 cell proliferation activity across different plant parts(branch wood,branch bark,and pericarp)using various solvents(water,methanol,ethanol,and n-hexane).Our findings revealed that water extracts displayed superior antioxidant activities in ABTS and RP assays,while methanol extracts exhibited better performance in DPPH and FRAP assays.Moreover,methanol extracts demonstrated the highest effectiveness against anti-HepG2 cell proliferation,whereas n-hexane extracts showed greater efficiency in cholinesterase inhibition.Notably,branch bark extracts exhibited the highest levels of phytochemical compounds,with both branch bark and pericarp extracts demonstrating significant effects in cholinesterase inhibition and anti-HepG2 cell proliferation.Correlation analysis indicated that phytochemical compounds were primarily responsible for the observed biological activities.Overall,extracts from the branch bark and pericarp of E.mollis showed promising potential for antioxidant and anticancer activities,suggesting their suitability for applications in the pharmaceutical industry as health-promoting products.展开更多
The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activit...The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.展开更多
Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-...Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace K...The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace KOH-catalyzed CO_(2) activation.Comprehensive investigations were conducted on three aspects:physicochemical structure evolution of biochar,mechanistic understanding of trace KOH-facilitated CO_(2) activation processes,and application characteristics for CO_(2) adsorption.Results demonstrate that biochar activated by trace KOH(<10%)and CO_(2) achieves comparable specific surface area(1244.09 m^(2)/g)to that obtained with 100%KOH activation(1425.10 m^(2)/g).The pore structure characteristics(specific surface area and pore volume)are governed by CO and CH4 generated through K-salt catalyzed reactions between CO_(2) and biochar.The optimal CO_(2) adsorption capacities of KBC adsorbent reached 4.70 mmol/g(0℃)and 7.25 mmol/g(25℃),representing the maximum values among comparable carbon adsorbents.The 5%KBC-CO_(2) sample exhibited CO_(2) adsorption capacities of 3.19 and 5.01 mmol/g under respective conditions,attaining current average performance levels.Notably,CO_(2)/N_(2) selectivity(85∶15,volume ratio)reached 64.71 at 0.02 bar with robust cycling stability.Molecular dynamics simulations revealed that oxygen-containing functional groups accelerate CO_(2) adsorption kinetics and enhance micropore storage capacity.This technical route offers simplicity,environmental compatibility,and scalability,providing critical references for large-scale preparation of high-quality carbon materials.展开更多
Although transition metal-catalyzed methylene C(sp^(3))—H functionalization is a great challenge, it has made noticeable progress in recent years. This review specifically describes Pd-catalyzed intermolecular functi...Although transition metal-catalyzed methylene C(sp^(3))—H functionalization is a great challenge, it has made noticeable progress in recent years. This review specifically describes Pd-catalyzed intermolecular functionalization of unactivated methylene C(sp^(3))—H bonds. A variety of reactions, including arylation, alkylation, alkenylation/alkynylation, acetoxylation, amination, halogenation, borylation, and silylation reactions, have been discussed. Due to the inert properties, methylene C(sp^(3))—H functionalization reaction usually relies on the use of directing group strategies, which can not only control regioselectivity but also address low reactivity issue. Various directing groups, including strongly coordinating bidentate auxiliaries and weakly coordinating innate functional groups, have proven to be effective for enabling methylene C(sp^(3))—H functionalization.展开更多
文摘Passiflora incarnata L.,commonly known as passionflower,is traditionally cultivated as an ornamental plant but has demonstrated diverse therapeutic potential.Its pharmacological effects are attributed to bioactive compounds such as flavonoids and alkaloids,which influence multiple biological pathways.This review aims to summarise and critically analyse recent findings on the pharmacological properties of Passiflora incarnata L.,focusing on its neuropsychiatric,antioxidant,antimicrobial,and anticancer activities.A targeted literature search was conducted in PubMed,Scopus,Web of Science,and Google Scholar for peer-reviewed publications between 2000 to 2025.Relevant articles were screened,and a more appropriate article related to the objective of the review was selected.Some classical papers are also cited as per the requirement of the topic.Passiflora incarnata L.showed multifunctional medicinal properties with various applications in neuropsychiatry,oxidative stress management,antimicrobial agent,and as an anticancer agent.The U.S.Food and Drug Administration categorizes passionflower extracts as“generally recognized as safe”.However,most evidence remains preclinical,with methodological variation limiting generalisation.Standardised formulation,robust clinical trials,and in-depth in vivo studies are essential to establish its therapeutic relevance and safety in modern medicine.
文摘Active inflammation in“inactive”progressive multiple sclerosis:Traditionally,the distinction between relapsing-remitting multiple sclerosis and progressive multiple sclerosis(PMS)has been framed as an inflammatory versus degenerative dichotomy.This was based on a broad misconception regarding essentially all neurodegenerative conditions,depicting the degenerative process as passive and immune-independent occurring as a late byproduct of active inflammation in the central nervous system(CNS),which is(solely)systemically driven.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
文摘BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.
文摘BACKGROUND Postoperative delirium(POD)is a common and serious complication in surgical patients,particularly older adults.Alterations in cholinergic function have been implicated in its pathophysiology.AIM To evaluate the association between preoperative serum cholinesterase(ChE)activity—specifically butyrylcholinesterase(BuChE)and acetylcholinesterase(AChE)—and the risk of POD in adult surgical patients in a meta-analysis.METHODS A systematic search was conducted in PubMed,EMBASE,and Web of Science up to March 28,2025 for studies reporting preoperative serum BuChE or AChE activity in relation to subsequent POD incidence.Standardized mean differences(SMDs)and odds ratios(ORs)with 95%confidence intervals(CIs)were pooled using random-effects models.Subgroup and sensitivity analyses were performed based on follow-up duration and analytic models.RESULTS Thirteen studies(n=2730 patients)were included.Patients who developed POD had significantly lower preoperative BuChE activity than those who did not(SMD=-0.28;95%CI:-0.39 to-0.16;I²=18%).Higher BuChE activity was associated with a reduced risk of POD(OR per 100 unit increment=0.97;95%CI:0.95-0.99;I2=0%).In contrast,pooled AChE activity did not differ significantly between POD and non-POD groups(SMD=-0.25;95%CI:-0.53 to 0.03;P=0.08;I2=80%),and the ORs per 1 unit increment in AChE activity were not statistically significant(OR=0.98;95%CI:0.95-1.01).CONCLUSION Lower preoperative serum BuChE activity is associated with an increased risk of POD in adults undergoing surgery.BuChE activity may serve as a potential preoperative biomarker for POD risk stratification.
基金Supported by Provincial Key Research Project of Henan Province,No.232102310081.
文摘BACKGROUND Major depressive disorder(MDD)and obesity(OB)are bidirectionally comorbid conditions with common neurobiological underpinnings.However,the neurocognitive mechanisms of their comorbidity remain poorly understood.AIM To examine regional abnormalities in spontaneous brain activity among patients with MDD-OB comorbidity.METHODS This study adopted a regional homogeneity(ReHo)analysis of resting-state functional magnetic resonance imaging.The study included 149 hospital patients divided into four groups:Patients experiencing their first episode of drug-naive MDD with OB,patients with MDD without OB,and age-and sex-matched healthy individuals with and without OB.Whole-brain ReHo analysis was conducted using SPM12 software and RESTplus toolkits,with group comparisons via ANOVA and post-hoc tests.Correlations between ReHo values and behavioral measures were examined.RESULTS ANOVA revealed significant whole-brain ReHo differences among the four groups in four key regions:The left middle temporal gyrus(MTG.L),right cuneus,left precuneus,and left thalamus.Post-hoc analyses confirmed pairwise differences between all groups across these regions(P<0.05).OB was associated with ReHo alterations in the MTG.L,right cuneus,and left thalamus,whereas abnormalities in the precuneus suggested synergistic pathological mechanisms between MDD and OB.Statistically significant correlations were found between the drive and fun-seeking dimensions of the behavioral activation system,as well as behavioral inhibition and the corresponding ReHo values.CONCLUSION Our findings provide novel evidence for the neuroadaptive mechanisms underlying the MDD-OB comorbidity.Further validation could lead to personalized interventions targeting MTG.L hyperactivity and targeting healthy food cues.
基金supported by the National Natural Science Foundation of China,Nos.92148206,82071330(both to ZT)a grant from the Major Program of Hubei Province,No.2023BAA005(to ZT)+1 种基金a grant from the Key Research and Discovery Program of Hubei Province,No.2021BCA109(to ZT)the Research Foundation of Tongji Hospital,No.2022B37(to PZ)。
文摘Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminogen activator may come into contact with brain tissue.Therefore,a thorough assessment of its safety is required.In this study,we established a mouse model of intracerebral hemorrhage induced by type VII collagenase.We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage,reduced pathological damage,and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma.In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin,the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis,autophagy,and endoplasmic reticulum stress.Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons.Moreover,the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis,autophagy,and endoplasmic reticulum stress.Furthermore,to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects,various inhibitors were used to target distinct domains.It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonineprotein kinase/mammalian target of rapamycin pathway.These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage,possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.
文摘Concerned that fewer than 20%of adolescents meet the World Health Organization(WHO)’s physical activity(PA)guidelines of engaging in≥60 min each day of the week of moderate-to-vigorous PA(MVPA),classifying them as insufficiently active,1 Araujo et al.2 sought to identify the global prevalence of adolescents reporting less frequent MVPA(≥60 min per day of MVPA≥1 days per week)and identify differences in this prevalence by age,gender.
基金Ministry of Science,Technological Development and Innovations of the Republic of Serbia,Grant/Award Number:451-03-137/2025-03/200133。
文摘Background:This study investigated the phenolic profile,antioxidant capacity,antibacterial effect,and antihemolytic activity of nettle leaves from two understudied Algerian species,Urtica pilulifera and Urtica urens.Methods:Urtica pilulifera and Urtica urens leaves extracts were prepared by maceration using methanol and distilled water respectively.Their phytochemical analysis(total phenolic content,flavonoids,hydrolysable and condensed tannins)was determined.The chemical profle of these extracts was performed using ultra-high-performance liquid chromatography diode array detection tandem mass spectrometry.Antioxidant activity(using the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging method),antibacterial activity(using disk diffusion method),and antihemolytic activity were carried out.Results:Results reveal high levels of flavonoids,tannins,alkaloids,and terpenoids.Several classes of compounds were identified in the extracts.Phenolic acid and other acids and their derivatives and flavonoids were detected in the extracts,with 4-O-caffeoyl-quinic acid and 5-O-caffeoyl-quinic acid being the main constituents in both extracts.Caffeic acid was also the main constituent present only in U.urens extract.For antioxidant activity of the methanolic extract of U.pilulifera and the aqueous extract of U.urens,the percentage inhibition value(82.76%and 59.06%)and the half-maximum inhibitory concentration(IC_(50))value(302 and 423μg/mL),respectively,were obtained.Antibacterial activity of nettle extracts(10 mg/mL)demonstrated the sensitivity of pathogenic strain susceptibility.The strongest antibacterial effect on tested strains was found in the aqueous extract of U.urens against Staphylococcus aureus(21±0.41 mm)compared to the methanolic extract of U.pilulifera(16±0.40 mm).The antihemolytic activity in the methanolic and aqueous extracts was 76.26%and 60.67%,respectively.The methanolic extract exhibited exceptional antihemolytic effect,with an IC_(50)value of 327μg/mL,whereas the aqueous extract had an IC_(50)value of 412μg/mL.Conclusions:The study confirms the presence of bioactive substances in the nettle species,including flavonoids and tannins,which possess antioxidant,antibacterial,and antihemolytic properties,and can be processed into food and pharmaceutical products.
基金financially supported by the National Natural Science Foundation of China(22179035)the Science Fund for Distinguished Young Scholars of Heilongjiang Province(JQ2022B001)the Fundamental Research Funds for the Universities of Heilongjiang Province of China(2023-KYYWF1440)。
文摘Electrocatalytic nitrate reduction reaction(NitRR)utilizing water as a hydrogen source under ambient conditions represents a highly promising avenue for sustainable ammonia synthesis and environmental remediation.However,achieving high efficiency and selectivity in NitRR is fundamentally challenged by the complex lifecycle management of active hydrogen derived from water splitting.This review provides a timely and comprehensive analysis centered on the pivotal role and meticulous regulation of active hydrogen throughout the NitRR process.We first elucidate the distinct functions and characteristics of various hydrogen species,followed by a survey of advanced characterization techniques crucial for monitoring the dynamics of active hydrogen.Critically,three core strategies were systematically dissected to modulate the active hydrogen lifecycle:accelerating water activation and dissociation,enhancing the directional transport of hydrogen species,and precisely tuning active hydrogen coupling pathways while suppressing parasitic hydrogen evolution.By consolidating current understanding from both catalyst design and reaction mechanism perspectives,this review offers a hydrogen-centric roadmap and highlights emerging opportunities for rationally engineering advanced NitRR systems.
基金financial support from the General Program of the National Natural Science Foundation of China(Grant No.12474195)the Key Project of Guangdong Provincial Department of Education(Grant No.2023ZDZX3021)the Natural Science Foundation of Guangdong Province(Grant No.2024A1515011343)。
文摘In the last decade,the study of pressure in active matter has attracted growing attention due to its fundamental relevance to nonequilibrium statistical physics.Active matter systems are composed of particles that consume energy to sustain persistent motion,which are inherently far from equilibrium.These particles can exhibit complex behaviors,including motility-induced phase separation,clustering,and anomalous stress distributions,motivating the introduction of active swim stress and swim pressure.Unlike in passive fluids,pressure in active systems emerges from momentum flux originating from swim force rather than equilibrium conservative interactions,offering a distinct perspective for understanding their mechanical response.Simple models of active Brownian particles(ABPs)have been employed in theoretical and simulation studies across both dilute and dense regimes,revealing that pressure is a state function and exhibits a nontrivial dependence on density.Together with nonequilibrium statistical concepts such as effective temperature and effective adhesion,pressure offers important insight for understanding behaviors in active matter such as sedimentation equilibrium and motility induced phase separation.Extensions of ABP models beyond their simplest form have underscored the fragility of the pressure-based equation of state,which can break down under factors such as density-dependent velocity,torque,complex boundary geometries and interactions.Building on these developments,this review provides a comprehensive survey of theoretical and experimental advances,with particular emphasis on the microscopic origins of active pressure and the mechanisms underlying the breakdown of the equation of state.
基金supported by The Shenzhen Educational Research Funding(zdzb2014)The Shenzhen Science and Technology Innovation Commission(202307313000096)+4 种基金The Social Science Foundation from the China's Ministry of Education(23YJA880093)The Post-Doctoral Fellowship(2022M711174)The National Center for Mental Health(Z014)BC is supported by the Chaires de recherche Rennes Métropole(23C 0909)SM is supported by the National Insti-tutes of Health(R01AG72445).
文摘Today, most people know that physical activity(PA) is beneficial for their health ^(1,2)and aspire to engage in regular PA.^(3,4)However, despite their awareness of the importance of PA, it is evident that the transition from intention to action is challenging-a situation that has important public health implications. According to the World Health Organization,^(5)1 person dies every 6 s worldwide from causes related to physical inactivity, which underscores the urgency of addressing this situation.
文摘This study documents pioneering results in marginal wells in Texas,where the application of RDV-00■restored production through delayed protonic activation catalyzed by reservoir energy.The product,based on RDV■(Vasoactive Dynamic Reactor)technology,operates via:Controlled protonation of molecular structures;Release of energetic carbocations;Autonomous transformation without external inputs.(a)Case 1(Well#E2-Starr County):Certified as“dry”by RRC(2022)after 48 months at 0 BPD;8 months post-injection of 5 gal RDV-00■(Fluid column:37 bbl;Wellhead pressure:80 psi(vs.0 psi initially)).(b)Case 2(Well#P1-Luling Field):Historical stripper well(0.25-0.5 BPD);23 months of immobilization with 15 gal RDV-00■;Critical results:(1)Initial production:42 BPD(8,400%above baseline);(2)Shut-in wellhead pressure:40 psi(neighboring wells=0-3 psi);(3)Current behavior:Continuous recharge from reservoir(well shut-in due to lack of storage).(c)Technically Significant Observations:(1)First case of self-sustaining reactivation in depleted wells;(2)Mechanism validated by Autonomous pressure generation(0→40-80 psi),and Continuous flow without additional stimulation;(3)No documented precedents in SPE/OnePetro literature to our knowledge.
基金supported by the Higher Educational Youth Innovation Science and Technology Program Shandong Province(Grant Nos.2022KJ183 and 2022KJ175)the Natural Science Foundation of Shandong Province(Grant Nos.ZR2023MA016 and ZR2023JQ001)+1 种基金the National Natural Science Foundation of China(Grant Nos.11974208 and 12374012)financial support from the award of Taishan Scholar(Grant No.tsqn202211128).
文摘The activation of the N≡N triple bond in N_(2) is a fascinating topic in nitrogen chemistry.The transition metals have been demonstrated to effectively modulate the reactivity of N_(2) molecules under high pressure,leading to nitrogen-rich compounds.However,their use often results in a significant reduction in energy density.In this work,we propose a series of low-enthalpy nitrogen-rich phases in CN_(x)(x=3,...,7)compounds using a first-principles crystal structure search method.The results of calculations reveal that all these CN compounds are assembled from both CN_(4) tetrahedra and N_(x)(x=1,2,or 5)species.Strikingly,we find that the CN_(4) tetrahedron can effectively activate the N≡N bond through weakening of the π orbital of N_(2) under a pressure of 40 GPa,leading to stable CN polynitrides.The robust structural framework of CN polynitrides containing C-N and N-N bonds plays a crucial role in enhancing their structural stability,energy density,and hardness.Among these polynitrides,CN_(6) possesses not only a very high mass density of 3.19 g/cm^(3),but also an ultrahigh energy density of 28.94 kJ/cm^(3),which represents a significant advance in the development of energetic materials using high-pressure methods.This work provides new insights into the mechanism of N_(2) activation under high pressure,and offers a promising pathway to realize high-performance energetic materials.
基金National Natural Science Foundation of China(Grant No.31600549).
文摘To explore the potential utilization of Elaeagnus mollis,we conducted a comprehensive assessment of its phytochemical composition,antioxidant properties,cholinesterase inhibition,and anti-HepG2 cell proliferation activity across different plant parts(branch wood,branch bark,and pericarp)using various solvents(water,methanol,ethanol,and n-hexane).Our findings revealed that water extracts displayed superior antioxidant activities in ABTS and RP assays,while methanol extracts exhibited better performance in DPPH and FRAP assays.Moreover,methanol extracts demonstrated the highest effectiveness against anti-HepG2 cell proliferation,whereas n-hexane extracts showed greater efficiency in cholinesterase inhibition.Notably,branch bark extracts exhibited the highest levels of phytochemical compounds,with both branch bark and pericarp extracts demonstrating significant effects in cholinesterase inhibition and anti-HepG2 cell proliferation.Correlation analysis indicated that phytochemical compounds were primarily responsible for the observed biological activities.Overall,extracts from the branch bark and pericarp of E.mollis showed promising potential for antioxidant and anticancer activities,suggesting their suitability for applications in the pharmaceutical industry as health-promoting products.
基金funded in part by the German Research Foundation(Grant reference:496846758).
文摘The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.
基金supported by the National Natural Science Foundation of China,Nos.32371065(to CL)and 32170950(to LY)the Natural Science Foundation of the Guangdong Province,No.2023A1515010899(to CL)the Science and Technology Projects in Guangzhou,Nos.2023A4J0578 and 2024A03J0180(to CW)。
文摘Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金supported by the National Natural Science Foundation of China(52376103,542B2081).
文摘The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace KOH-catalyzed CO_(2) activation.Comprehensive investigations were conducted on three aspects:physicochemical structure evolution of biochar,mechanistic understanding of trace KOH-facilitated CO_(2) activation processes,and application characteristics for CO_(2) adsorption.Results demonstrate that biochar activated by trace KOH(<10%)and CO_(2) achieves comparable specific surface area(1244.09 m^(2)/g)to that obtained with 100%KOH activation(1425.10 m^(2)/g).The pore structure characteristics(specific surface area and pore volume)are governed by CO and CH4 generated through K-salt catalyzed reactions between CO_(2) and biochar.The optimal CO_(2) adsorption capacities of KBC adsorbent reached 4.70 mmol/g(0℃)and 7.25 mmol/g(25℃),representing the maximum values among comparable carbon adsorbents.The 5%KBC-CO_(2) sample exhibited CO_(2) adsorption capacities of 3.19 and 5.01 mmol/g under respective conditions,attaining current average performance levels.Notably,CO_(2)/N_(2) selectivity(85∶15,volume ratio)reached 64.71 at 0.02 bar with robust cycling stability.Molecular dynamics simulations revealed that oxygen-containing functional groups accelerate CO_(2) adsorption kinetics and enhance micropore storage capacity.This technical route offers simplicity,environmental compatibility,and scalability,providing critical references for large-scale preparation of high-quality carbon materials.
文摘Although transition metal-catalyzed methylene C(sp^(3))—H functionalization is a great challenge, it has made noticeable progress in recent years. This review specifically describes Pd-catalyzed intermolecular functionalization of unactivated methylene C(sp^(3))—H bonds. A variety of reactions, including arylation, alkylation, alkenylation/alkynylation, acetoxylation, amination, halogenation, borylation, and silylation reactions, have been discussed. Due to the inert properties, methylene C(sp^(3))—H functionalization reaction usually relies on the use of directing group strategies, which can not only control regioselectivity but also address low reactivity issue. Various directing groups, including strongly coordinating bidentate auxiliaries and weakly coordinating innate functional groups, have proven to be effective for enabling methylene C(sp^(3))—H functionalization.