The finiteness of superstring theory at each order in perturbation theory is considered with respect to the ten-dimensional effective action. The quantum consistency of the ten-dimensional superstring effective action...The finiteness of superstring theory at each order in perturbation theory is considered with respect to the ten-dimensional effective action. The quantum consistency of the ten-dimensional superstring effective action is confirmed with an analysis of the perturbative expansion of the quartic sector. It is found to be compatible with the finiteness of reduced four-dimensional theory. Furthermore, implications for the validity of superstring perturbation theory at lower energies is considered.展开更多
In this paper we apply the assumption of our recent work in noncommutative scalar models to the noncommutative U(1) gauge theories. This assumption is that the noneommutative effects start to be visible continuously...In this paper we apply the assumption of our recent work in noncommutative scalar models to the noncommutative U(1) gauge theories. This assumption is that the noneommutative effects start to be visible continuously from a scale ANC and that below this scale the theory is a commutative one. Based on this assumption and using background field method and loop calculations, an effective action is derived for noncommutative U(1) gauge theory. It will be shown that the corresponding low energy effective theory is asymptotically free and that under this condition the noncommutative quadratic IR divergences will not appear. The effective theory contains higher dimensional terms, which become more important at high energies. These terms predict an elastic photon-photon scattering due to the noncommutativity of space. The coefficients of these higher dimensional terms also satisfy a positivity constraint indicating that in this theory the related diseases of superluminal signal propagating and bad analytic properties of S-matrix do not exist. In the last section, we will apply our method to the noncommutative extra dimension theories.展开更多
In this paper,we discuss some non-trivial relations for ordered exponentials on smooth Riemannian manifolds.As an example of application,we study the dependence of the four-dimensional quantum Yang–Mills effective ac...In this paper,we discuss some non-trivial relations for ordered exponentials on smooth Riemannian manifolds.As an example of application,we study the dependence of the four-dimensional quantum Yang–Mills effective action on the special gauge transformation with respect to the background field.Also,we formulate some open questions about a structure of divergences for a special type of regularization in the presence of the background field formalism.展开更多
Summary: The effect of acute ischemia on the electrophysiological characteristics of the three layers myocardium of canine in vivo was investigated. Twelve canines were divided into two groups randomly: acute ischem...Summary: The effect of acute ischemia on the electrophysiological characteristics of the three layers myocardium of canine in vivo was investigated. Twelve canines were divided into two groups randomly: acute ischemia (AI) group and sham operation (SO) group. By using the monophasic action potential (MAP) technique, MAP and effective refractory period (ERP) of the three layers myocardium were measured by specially designed plunge needle electrodes and the transmural dispersion of repolarization (TDR) and transmural dispersion of ERP (TDE) were analyzed. The results showed that in the AI group, MAP duration (MAPD) was shortened from 201.67±21.42 ms to 169.50±13.81 ms (P〈0.05), but ERP prolonged to varying degrees and TDE increased during ischemia. In the SO group, MAPD and ERP did not change almost. Among of the three layers myocardium of canine, MAPD was coincident in two groups. It was concluded that during acute ischemia, MAPD was shortened sharply, but there was no significant difference among of the three layers myocardium. The prolonged ERP was concomitant with increased TDE during acute ischemia, which may play an important role in the occurrence of arrhythmias induced by acute ischemia. These findings may have important implications in arrhythmogenesis.展开更多
Information on mechanisms and inheritance of resistance is critical to plan an effective strategy to breed for resistance to insect pests. Therefore, we evaluated a diverse array of chickpea genotypes (eight desi and ...Information on mechanisms and inheritance of resistance is critical to plan an effective strategy to breed for resistance to insect pests. Therefore, we evaluated a diverse array of chickpea genotypes (eight desi and one kabuli) with varying levels of resistance to the pod borer, Helicoverpa armigera to gain an understanding of the nature of gene action and possible maternal effects. The test genotypes were crossed in all possible combinations for a full diallel. The 72 F1s (36 direct and 36 reciprocal crosses) along with the parents were evaluated for resistance to H. armigera under field conditions, and for antibiosis mechanism of resistance (larval survival and larval weight gain) by using detached leaf assay under laboratory conditions, and grain yield under un-protected conditions in the field. Additive gene action governed the inheritance of resistance to H. armigera, while non-additive type of gene action was predominant for inheritance of antibiosis component of resistance (larval survival and larval weight) and grain yield. Greater magnitude of σ2 A(17.39 and 1.42) than σ2 D (3.93 and 1.21) indicated the preponderance of σ2 Ain inheritance of resistance to pod borer, H. armigera under laboratory and field conditions, respectively. There were no maternal effects for inheritance of resistance to pod borer and grain yield. Lines with significant gca effects for pod borer damage and grain yield were identified for further use in the resistance breeding program. The implications of the inheritance pattern of pod borer resistance and grain yield are discussed in the context of strategies to enhance pod borer resistance and grain yield in chickpea.展开更多
The neuroimmune system of the brain:Early studies(1990’s)on the neurological consequences of human immunodeficiency virus-1(HIV-1)infection in the brain were instrumental in establishing that specific brain cell type...The neuroimmune system of the brain:Early studies(1990’s)on the neurological consequences of human immunodeficiency virus-1(HIV-1)infection in the brain were instrumental in establishing that specific brain cell types can function as an innate immune system within the brain and in that role influence cognitive function(Kaul et al.,2005).展开更多
Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that e...Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.展开更多
文摘The finiteness of superstring theory at each order in perturbation theory is considered with respect to the ten-dimensional effective action. The quantum consistency of the ten-dimensional superstring effective action is confirmed with an analysis of the perturbative expansion of the quartic sector. It is found to be compatible with the finiteness of reduced four-dimensional theory. Furthermore, implications for the validity of superstring perturbation theory at lower energies is considered.
文摘In this paper we apply the assumption of our recent work in noncommutative scalar models to the noncommutative U(1) gauge theories. This assumption is that the noneommutative effects start to be visible continuously from a scale ANC and that below this scale the theory is a commutative one. Based on this assumption and using background field method and loop calculations, an effective action is derived for noncommutative U(1) gauge theory. It will be shown that the corresponding low energy effective theory is asymptotically free and that under this condition the noncommutative quadratic IR divergences will not appear. The effective theory contains higher dimensional terms, which become more important at high energies. These terms predict an elastic photon-photon scattering due to the noncommutativity of space. The coefficients of these higher dimensional terms also satisfy a positivity constraint indicating that in this theory the related diseases of superluminal signal propagating and bad analytic properties of S-matrix do not exist. In the last section, we will apply our method to the noncommutative extra dimension theories.
基金supported by the Ministry of Science and Higher Education of the Russian Federation,agreement 07515-2022-289supported in parts by the Foundation for the Advancement of Theoretical Physics and Mathematics‘BASIS’,grant‘Young Russian Mathematics’。
文摘In this paper,we discuss some non-trivial relations for ordered exponentials on smooth Riemannian manifolds.As an example of application,we study the dependence of the four-dimensional quantum Yang–Mills effective action on the special gauge transformation with respect to the background field.Also,we formulate some open questions about a structure of divergences for a special type of regularization in the presence of the background field formalism.
文摘Summary: The effect of acute ischemia on the electrophysiological characteristics of the three layers myocardium of canine in vivo was investigated. Twelve canines were divided into two groups randomly: acute ischemia (AI) group and sham operation (SO) group. By using the monophasic action potential (MAP) technique, MAP and effective refractory period (ERP) of the three layers myocardium were measured by specially designed plunge needle electrodes and the transmural dispersion of repolarization (TDR) and transmural dispersion of ERP (TDE) were analyzed. The results showed that in the AI group, MAP duration (MAPD) was shortened from 201.67±21.42 ms to 169.50±13.81 ms (P〈0.05), but ERP prolonged to varying degrees and TDE increased during ischemia. In the SO group, MAPD and ERP did not change almost. Among of the three layers myocardium of canine, MAPD was coincident in two groups. It was concluded that during acute ischemia, MAPD was shortened sharply, but there was no significant difference among of the three layers myocardium. The prolonged ERP was concomitant with increased TDE during acute ischemia, which may play an important role in the occurrence of arrhythmias induced by acute ischemia. These findings may have important implications in arrhythmogenesis.
文摘Information on mechanisms and inheritance of resistance is critical to plan an effective strategy to breed for resistance to insect pests. Therefore, we evaluated a diverse array of chickpea genotypes (eight desi and one kabuli) with varying levels of resistance to the pod borer, Helicoverpa armigera to gain an understanding of the nature of gene action and possible maternal effects. The test genotypes were crossed in all possible combinations for a full diallel. The 72 F1s (36 direct and 36 reciprocal crosses) along with the parents were evaluated for resistance to H. armigera under field conditions, and for antibiosis mechanism of resistance (larval survival and larval weight gain) by using detached leaf assay under laboratory conditions, and grain yield under un-protected conditions in the field. Additive gene action governed the inheritance of resistance to H. armigera, while non-additive type of gene action was predominant for inheritance of antibiosis component of resistance (larval survival and larval weight) and grain yield. Greater magnitude of σ2 A(17.39 and 1.42) than σ2 D (3.93 and 1.21) indicated the preponderance of σ2 Ain inheritance of resistance to pod borer, H. armigera under laboratory and field conditions, respectively. There were no maternal effects for inheritance of resistance to pod borer and grain yield. Lines with significant gca effects for pod borer damage and grain yield were identified for further use in the resistance breeding program. The implications of the inheritance pattern of pod borer resistance and grain yield are discussed in the context of strategies to enhance pod borer resistance and grain yield in chickpea.
基金supported by National Institutes of Health Grant AA024484(to DLG)。
文摘The neuroimmune system of the brain:Early studies(1990’s)on the neurological consequences of human immunodeficiency virus-1(HIV-1)infection in the brain were instrumental in establishing that specific brain cell types can function as an innate immune system within the brain and in that role influence cognitive function(Kaul et al.,2005).
文摘Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.