Objective: The aim of this study was to investigate subgingival infection frequencies ofPorphyromonas gingivalis and Actinobacillus actinomycetemcomitans strains with genetic variation in Chinese chronic periodontit...Objective: The aim of this study was to investigate subgingival infection frequencies ofPorphyromonas gingivalis and Actinobacillus actinomycetemcomitans strains with genetic variation in Chinese chronic periodontitis (CP) patients and to evaluate its correlation with clinical parameters. Methods: Two multiplex polymerase chain reaction (PCR) assays were developed to detect the 16SrDNA, collagenase (prtC) and fimbria (fimA) genes of P. gingivalis and the 16SrDNA, leukotoxin (lktA) and fimbria-associated protein (fap) genes ofA. actinomycetemcomitans in 60 sulcus samples from 30 periodontal healthy subjects and in 122 subgingival plaque samples from 61 patients with CP. The PCR products were further T-A cloned and sent for nucleotide sequence analysis. Results: The 16SrDNA,prtC andfimA genes ofP. gingivalis were detected in 92.6%, 85.2% and 80.3% of the subgingival plaque samples respectively, while the 16SrDNA, lktA andfap genes ofA. actinomycetemcomitans were in 84.4%, 75.4% and 50.0% respectively. Nucleotide sequence analysis showed 98.62%-100% homology of the PCR products in these genes with the reported sequences. P. gingivalis strains with prtC+/fimA+ and A. actinomycetemcomitans with lktA+ were predominant in deep pockets (〉6 mm) or in sites with attachment loss 〉5 mm than in shallow pockets (3-4 mm) or in sites with attachment loss 〈2 mm (P〈0.05). P. gingivalis strains withprtC+/fimA+ also showed higher frequency in gingival index (GI)=3 than in GI=1 group (P〈0.05). Conclusion: Infection ofP. gingivalis with prtC+/fimA+ and A. actinomycetemcomitans with lktA+ correlates with periodontal destruction of CP in Chinese. Nonetheless P. gingivalis fim4, prtC genes and A. actinomycetem- comitans lktA gene are closely associated with periodontal destruction, while A. actinomycetemcomitansfap gene is not.展开更多
Objective: To determine Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) isolated from periodontal patients and healthy subjects using culture and PCR methods. Methods: Duplicate paper point needles we...Objective: To determine Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) isolated from periodontal patients and healthy subjects using culture and PCR methods. Methods: Duplicate paper point needles were taken from 100 samples (50 healthy subjects and 50 patients), who referred to the specialized dental clinic from Oct. 2015 to Mar. 2016. In laboratory after incubation period and observing the star-shaped colony A. actinomycetemcomitans, the confirmation tests, including gram staining and catalase test were carried out. For PCR, samples were analyzed with genus specific primers. These primers set, amplified a 500 bp fragment. Results: Of the 100 samples, A. actinomycetemcomitans was isolated from 31 patients (31%), (24 isolate of patients, and 7 isolate of healthy subjects) by using a selective Aggregatibacter isolation medium. Using PCR, a total of 49 (49%) samples were found to be positive for A. actinomycetemcomitans (35 isolate of patients, and 14 isolate of healthy subjects). Conclusion: PCR was found to be highly sensitive when genus specific primers were used for diagnosis of A. actinomycetemcomitans in comparison with culture method.展开更多
Objective: Colchicine induced a non-protective Th2-like immunity in Aggregatibacter actinomycetemcomitans-stimulated murine immune response. The aim of the present study was to determine whether colchicine affects ind...Objective: Colchicine induced a non-protective Th2-like immunity in Aggregatibacter actinomycetemcomitans-stimulated murine immune response. The aim of the present study was to determine whether colchicine affects inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) production in A. actinomycetemcomitans-immunized mice. Materials and Methods: BALB/c mice were sham-immunized (group I) or immunized with heat-killed A. actinomycetemcomitans (group II-VII). Colchicine was injected intraperitoneally before (group III), on the same day of (group IV), or after (group V) the primary immunization and on the same day of (group VI) or after (group VII) the secondary immunization. In vitro, spleen cells from either sham- or heat-killed A. actinomycetemcomitan-immunized animals were cultured and stimulated with heat-killed A. actinomycetemcomitans in the presence or absence of colchicine with or without addition of L-arginine, Db-cAMP, forskolin or interferon-γ (IFN-γ). The levels of splenic iNOS activity and both serum and culture supernatant NO levels were assessed. Results: The results showed that colchicine did inhibit both splenic iNOS activity and serum NO levels only when the drug was injected at the same time as the immunization (group IV and VI). Splenic iNOS activity and NO levels on antigen-stimulated spleen cell cultures were also suppressed by colchicine, even in the presence of L-arginine, Db-AMP or forskolin. IFN-γ only partially restored iNOS activity and NO levels in the antigen and colchicine-treated spleen cell cultures. Conclusion: This study suggests, therefore, that colchicine may suppress the iNOS activity and NO production in A. actinomycetemcomitans-immunized mice in vivo and in vitro.展开更多
A number of studies have indicated that bacteria able to emit red fluorescence can be detected by light in-duced fluorescence technique and killed by photodynamic therapy. The objective of this study was to investigat...A number of studies have indicated that bacteria able to emit red fluorescence can be detected by light in-duced fluorescence technique and killed by photodynamic therapy. The objective of this study was to investigate the red fluorescence properties of the single gram negative capnophilic bacterium Aggregatibacter actinomycetemcomitans, ATCC 33384, and to investigate if these properties were related to the growth, morphology and size of the bacterial colonies. Time trend assessment was made with red fluorescence by QLF (Quantitative Light-induced Fluorescence), as well as with white light digital imaging. It was demonstrated that A. actinomycetemcomitans, a single capnophilic bacterium, is able to produce red fluorescence on its own, i.e. in the absence of other bacteria strains, and that blood agar is necessary to obtain red fluorescence from this bacterium on culture plates. This bacterium formed smooth circular, bell/dome like colonies increasing in size with time exhibiting various red fluorescence behaviors. A large variation in the fluorescence behavior points out an inhomogeneous distribution of red fluorescence within and between the colonies, i.e. the size of the investigated colonies did not correlate with the red fluorescence area, suggesting a dependence on the colony morphology such as the colony growth in height. To our knowledge this is the first study that have shown that A. actinomycetemcomitans on its own is able to produce fluorescence in the red spectral region.展开更多
Background The association between the infection of Porphyromonas gingivalis, Actinobacillus actinomy-cetemcomitans and Treponema denticola in chronic periodontitis (CP) and the severity of periodontal disease remains...Background The association between the infection of Porphyromonas gingivalis, Actinobacillus actinomy-cetemcomitans and Treponema denticola in chronic periodontitis (CP) and the severity of periodontal disease remains to be elucidated. The aim of this study was to investigate the subgingival infection frequencies of three periodontopathic bacteria in Chinese CP patients and to evaluate the correlations between infection by these bacteria and periodontal destruction.Methods A multiple PCR assay using primers derived from 16SrDNA genes of P. gingivalis, A. actinomy-cetemitans and T. denticola was established to measure simultaneously the presence of the three microbes in 162 subgingival samples from 81 Chinese CP patients. Results The positive rates of P. gingivalis, A. actinomycetemitans and T. denticola in the subgingival samples were 84.6%, 83.3% and 88.3%, respectively. Of the subgingival samples, 68% revealed the coinfection of all the three microbes. The infection rates with P. gingivalis, A. actinomycetemitans or T. denticola alone was 5.9% (1/17), 17.6% (3/17) and 76.5% (13/17), respectively. A close association was present between the A. actinomycetemitans infection and gingival index (GI) (P<0.01), but not between P. gingivalis or T. denticola infection and GI (P>0.05). P. gingivalis and A. actinomycetemitans were more frequently detectable in middle and deep pockets than in shallow ones (P<0.01), while T. denticola was found remarkably often in deep pockets (P<0.05). The coinfection rate of the three microbes was significantly higher in sites with severe periodontitis than in those with mild periodontitis (P<0.01). Conclusions The multiple PCR established in this study can be used as a sensitive and specific method to simultaneously detect all three microbes in subgingival samples. A. actinomycetemitans infection may be associated with CP and play an important role in the periodontal tissue destruction. The coinfection of P. gingivalis, A. actinomycetemitans and T. denticola can cause more serious periodontal destruction than infection of any one or two of the three microbes.展开更多
Oral lichen planus (OLP) is a chronic inflammatory disease that is frequently detected in oral tissues. The aim of our study was to identify the prevalence of the detection of periodontopathogenic microorganisms (A...Oral lichen planus (OLP) is a chronic inflammatory disease that is frequently detected in oral tissues. The aim of our study was to identify the prevalence of the detection of periodontopathogenic microorganisms (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia and Treponema denticola in OLP patients and to compare with this prevalence of periodontopathogenic microorganisms in healthy non-OLP patients. Our study included 27 (18 chronic periodontitis (OLPP) and 9 gingivitis (OLPG)) patients diagnosed with OLP along with 26 (13 chronic periodontitis (HP) and 13 gingivitis (HG)) healthy non-OLP patients. The multiplex polymerase chain reaction (PCR)with subsequent reverse hybridization method (micro-IDent) was used for identifying periodontopathogenic microorganisms present in subgingival plaque samples. The percentages of detection for A. actinomycetemcomitans, P. gingivalis, P. intermedia, T. forsythia and T. denticola in subgingival plaque samples taken from OLP patients (OLPG and OLPP) were 18.5%, 85.1%, 81.4%, 88.8% and 74%, respectively. Meanwhile, in the non-OLP patients (HG and HP), these values were 7.6%, 50%, 46.1%, 73% and 57.7%, respectively. Thus, comparing the non-OLP groups with the OLP groups, the periodontopathogens' percentages of detection in the OLP groups were higher than those in the non-OLP groups. According to our study results, OLP patients have higher levels of infection with A. actinomycetemcomitans, P. gingivalis, P. intermedia, T. forsythia and T. denticola than non-OLP patients. We argue that the high percentages in patients with OLP may help identify the importance of periodontopathoRenic microorganisms in the progress of periodontal diseases of OLP.展开更多
基金Project (No. 30471888) supported by the National Natural Science Foundation of China
文摘Objective: The aim of this study was to investigate subgingival infection frequencies ofPorphyromonas gingivalis and Actinobacillus actinomycetemcomitans strains with genetic variation in Chinese chronic periodontitis (CP) patients and to evaluate its correlation with clinical parameters. Methods: Two multiplex polymerase chain reaction (PCR) assays were developed to detect the 16SrDNA, collagenase (prtC) and fimbria (fimA) genes of P. gingivalis and the 16SrDNA, leukotoxin (lktA) and fimbria-associated protein (fap) genes ofA. actinomycetemcomitans in 60 sulcus samples from 30 periodontal healthy subjects and in 122 subgingival plaque samples from 61 patients with CP. The PCR products were further T-A cloned and sent for nucleotide sequence analysis. Results: The 16SrDNA,prtC andfimA genes ofP. gingivalis were detected in 92.6%, 85.2% and 80.3% of the subgingival plaque samples respectively, while the 16SrDNA, lktA andfap genes ofA. actinomycetemcomitans were in 84.4%, 75.4% and 50.0% respectively. Nucleotide sequence analysis showed 98.62%-100% homology of the PCR products in these genes with the reported sequences. P. gingivalis strains with prtC+/fimA+ and A. actinomycetemcomitans with lktA+ were predominant in deep pockets (〉6 mm) or in sites with attachment loss 〉5 mm than in shallow pockets (3-4 mm) or in sites with attachment loss 〈2 mm (P〈0.05). P. gingivalis strains withprtC+/fimA+ also showed higher frequency in gingival index (GI)=3 than in GI=1 group (P〈0.05). Conclusion: Infection ofP. gingivalis with prtC+/fimA+ and A. actinomycetemcomitans with lktA+ correlates with periodontal destruction of CP in Chinese. Nonetheless P. gingivalis fim4, prtC genes and A. actinomycetem- comitans lktA gene are closely associated with periodontal destruction, while A. actinomycetemcomitansfap gene is not.
文摘Objective: To determine Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) isolated from periodontal patients and healthy subjects using culture and PCR methods. Methods: Duplicate paper point needles were taken from 100 samples (50 healthy subjects and 50 patients), who referred to the specialized dental clinic from Oct. 2015 to Mar. 2016. In laboratory after incubation period and observing the star-shaped colony A. actinomycetemcomitans, the confirmation tests, including gram staining and catalase test were carried out. For PCR, samples were analyzed with genus specific primers. These primers set, amplified a 500 bp fragment. Results: Of the 100 samples, A. actinomycetemcomitans was isolated from 31 patients (31%), (24 isolate of patients, and 7 isolate of healthy subjects) by using a selective Aggregatibacter isolation medium. Using PCR, a total of 49 (49%) samples were found to be positive for A. actinomycetemcomitans (35 isolate of patients, and 14 isolate of healthy subjects). Conclusion: PCR was found to be highly sensitive when genus specific primers were used for diagnosis of A. actinomycetemcomitans in comparison with culture method.
文摘Objective: Colchicine induced a non-protective Th2-like immunity in Aggregatibacter actinomycetemcomitans-stimulated murine immune response. The aim of the present study was to determine whether colchicine affects inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) production in A. actinomycetemcomitans-immunized mice. Materials and Methods: BALB/c mice were sham-immunized (group I) or immunized with heat-killed A. actinomycetemcomitans (group II-VII). Colchicine was injected intraperitoneally before (group III), on the same day of (group IV), or after (group V) the primary immunization and on the same day of (group VI) or after (group VII) the secondary immunization. In vitro, spleen cells from either sham- or heat-killed A. actinomycetemcomitan-immunized animals were cultured and stimulated with heat-killed A. actinomycetemcomitans in the presence or absence of colchicine with or without addition of L-arginine, Db-cAMP, forskolin or interferon-γ (IFN-γ). The levels of splenic iNOS activity and both serum and culture supernatant NO levels were assessed. Results: The results showed that colchicine did inhibit both splenic iNOS activity and serum NO levels only when the drug was injected at the same time as the immunization (group IV and VI). Splenic iNOS activity and NO levels on antigen-stimulated spleen cell cultures were also suppressed by colchicine, even in the presence of L-arginine, Db-AMP or forskolin. IFN-γ only partially restored iNOS activity and NO levels in the antigen and colchicine-treated spleen cell cultures. Conclusion: This study suggests, therefore, that colchicine may suppress the iNOS activity and NO production in A. actinomycetemcomitans-immunized mice in vivo and in vitro.
基金supported by a grant from StureNymans Commemoration Fund
文摘A number of studies have indicated that bacteria able to emit red fluorescence can be detected by light in-duced fluorescence technique and killed by photodynamic therapy. The objective of this study was to investigate the red fluorescence properties of the single gram negative capnophilic bacterium Aggregatibacter actinomycetemcomitans, ATCC 33384, and to investigate if these properties were related to the growth, morphology and size of the bacterial colonies. Time trend assessment was made with red fluorescence by QLF (Quantitative Light-induced Fluorescence), as well as with white light digital imaging. It was demonstrated that A. actinomycetemcomitans, a single capnophilic bacterium, is able to produce red fluorescence on its own, i.e. in the absence of other bacteria strains, and that blood agar is necessary to obtain red fluorescence from this bacterium on culture plates. This bacterium formed smooth circular, bell/dome like colonies increasing in size with time exhibiting various red fluorescence behaviors. A large variation in the fluorescence behavior points out an inhomogeneous distribution of red fluorescence within and between the colonies, i.e. the size of the investigated colonies did not correlate with the red fluorescence area, suggesting a dependence on the colony morphology such as the colony growth in height. To our knowledge this is the first study that have shown that A. actinomycetemcomitans on its own is able to produce fluorescence in the red spectral region.
文摘Background The association between the infection of Porphyromonas gingivalis, Actinobacillus actinomy-cetemcomitans and Treponema denticola in chronic periodontitis (CP) and the severity of periodontal disease remains to be elucidated. The aim of this study was to investigate the subgingival infection frequencies of three periodontopathic bacteria in Chinese CP patients and to evaluate the correlations between infection by these bacteria and periodontal destruction.Methods A multiple PCR assay using primers derived from 16SrDNA genes of P. gingivalis, A. actinomy-cetemitans and T. denticola was established to measure simultaneously the presence of the three microbes in 162 subgingival samples from 81 Chinese CP patients. Results The positive rates of P. gingivalis, A. actinomycetemitans and T. denticola in the subgingival samples were 84.6%, 83.3% and 88.3%, respectively. Of the subgingival samples, 68% revealed the coinfection of all the three microbes. The infection rates with P. gingivalis, A. actinomycetemitans or T. denticola alone was 5.9% (1/17), 17.6% (3/17) and 76.5% (13/17), respectively. A close association was present between the A. actinomycetemitans infection and gingival index (GI) (P<0.01), but not between P. gingivalis or T. denticola infection and GI (P>0.05). P. gingivalis and A. actinomycetemitans were more frequently detectable in middle and deep pockets than in shallow ones (P<0.01), while T. denticola was found remarkably often in deep pockets (P<0.05). The coinfection rate of the three microbes was significantly higher in sites with severe periodontitis than in those with mild periodontitis (P<0.01). Conclusions The multiple PCR established in this study can be used as a sensitive and specific method to simultaneously detect all three microbes in subgingival samples. A. actinomycetemitans infection may be associated with CP and play an important role in the periodontal tissue destruction. The coinfection of P. gingivalis, A. actinomycetemitans and T. denticola can cause more serious periodontal destruction than infection of any one or two of the three microbes.
基金project support from the Turkey Scientific and Technological Research Council (project no. 106S340)Selcuk University Coordination of Scientific Research (project no. 06202034)supported by Open Fund of State Key Laboratory of Oral Diseases, Sichuan University
文摘Oral lichen planus (OLP) is a chronic inflammatory disease that is frequently detected in oral tissues. The aim of our study was to identify the prevalence of the detection of periodontopathogenic microorganisms (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia and Treponema denticola in OLP patients and to compare with this prevalence of periodontopathogenic microorganisms in healthy non-OLP patients. Our study included 27 (18 chronic periodontitis (OLPP) and 9 gingivitis (OLPG)) patients diagnosed with OLP along with 26 (13 chronic periodontitis (HP) and 13 gingivitis (HG)) healthy non-OLP patients. The multiplex polymerase chain reaction (PCR)with subsequent reverse hybridization method (micro-IDent) was used for identifying periodontopathogenic microorganisms present in subgingival plaque samples. The percentages of detection for A. actinomycetemcomitans, P. gingivalis, P. intermedia, T. forsythia and T. denticola in subgingival plaque samples taken from OLP patients (OLPG and OLPP) were 18.5%, 85.1%, 81.4%, 88.8% and 74%, respectively. Meanwhile, in the non-OLP patients (HG and HP), these values were 7.6%, 50%, 46.1%, 73% and 57.7%, respectively. Thus, comparing the non-OLP groups with the OLP groups, the periodontopathogens' percentages of detection in the OLP groups were higher than those in the non-OLP groups. According to our study results, OLP patients have higher levels of infection with A. actinomycetemcomitans, P. gingivalis, P. intermedia, T. forsythia and T. denticola than non-OLP patients. We argue that the high percentages in patients with OLP may help identify the importance of periodontopathoRenic microorganisms in the progress of periodontal diseases of OLP.