In this work,we report a facile and efficient supramolecular strategy for the construction of colortunable thermally activated delayed fluorescence polymeric materials(TADF PMs)through host–vip complexation.Consequ...In this work,we report a facile and efficient supramolecular strategy for the construction of colortunable thermally activated delayed fluorescence polymeric materials(TADF PMs)through host–vip complexation.Consequently,new kinds of TADF PMs exhibiting multicolor emissions were constructed conveniently by mixing a calix[3]acridan-modified polymer and various commercially available receptors.This emergent TADF property was attributed to the formation of the through-space charge transfer(TSCT)interactions between the macrocyclic donor in the polymer and the vip acceptors.Moreover,multicolor emission and high photoluminescence quantum yield(PLQY)of up to 40%were achieved readily by tailoring the vips with different electron-withdrawing abilities.Further,we found that the TADF PMs could be prepared readily on a large scale with good processability;thus,the approach could achieve potential application on rewritable advanced information encryption.Therefore,this work not only develops an efficient supramolecular strategy to design and construct color-tunable TADF PMs but also offers a new perspective for their practical applications in materials science.展开更多
基金supported by the National Natural Science Foundation of China(grant nos.22371277,22171272,and 22031010)the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS+1 种基金grant no.XDB0520302)the Youth Innovation Promotion Association CAS(grant no.2021035).
文摘In this work,we report a facile and efficient supramolecular strategy for the construction of colortunable thermally activated delayed fluorescence polymeric materials(TADF PMs)through host–vip complexation.Consequently,new kinds of TADF PMs exhibiting multicolor emissions were constructed conveniently by mixing a calix[3]acridan-modified polymer and various commercially available receptors.This emergent TADF property was attributed to the formation of the through-space charge transfer(TSCT)interactions between the macrocyclic donor in the polymer and the vip acceptors.Moreover,multicolor emission and high photoluminescence quantum yield(PLQY)of up to 40%were achieved readily by tailoring the vips with different electron-withdrawing abilities.Further,we found that the TADF PMs could be prepared readily on a large scale with good processability;thus,the approach could achieve potential application on rewritable advanced information encryption.Therefore,this work not only develops an efficient supramolecular strategy to design and construct color-tunable TADF PMs but also offers a new perspective for their practical applications in materials science.