Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
A finite difference/boundary integral procedure to determine theacoustic reflected pressure from a fluid-loaded bi-laminated plate isdescribed. The bi-laminate is composed of a piezoelectric layer andan elastic layer ...A finite difference/boundary integral procedure to determine theacoustic reflected pressure from a fluid-loaded bi-laminated plate isdescribed. The bi-laminate is composed of a piezoelectric layer andan elastic layer in contact with the fluid, and is held by anacoustically hard baffle. In the numerical model, the fluid pressureat fluid/solid interface is replaced by a continuum of point sourcesweighted by the normal acceleration of the elastic plate, and thegoverning equation system is solved in the solid domain.展开更多
The acoustic reflected pressure from a periodic elastic/piezoelectric laminated plate is studied for the purpose of acoustic reflection control.A finite difference/boundary integral procedure to determine the reflecte...The acoustic reflected pressure from a periodic elastic/piezoelectric laminated plate is studied for the purpose of acoustic reflection control.A finite difference/boundary integral procedure to determine the reflected pressure from the fluid-loaded plate is described.In the numerical model,a Green's function in the form of infinite sum is employed and a boundary integral is performed to replace the fluid pressure at fluid/solid interface by a continuum of point sources weighted by the normal acceleration of the elastic plate.The equation system is then solved only in the solid domain.It is demonstrated that an appropriate applied voltage potential across the piezoelectric layer has the effect of cancelling the fundamental propagating mode,and there,is no reflection for frequencies up to the cut-off frequency of the next propagating mode if the fundamental mode has been eliminated.展开更多
Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected wav...Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected waves are interfered with the dominant borehole-guided modes and there are only eight receiving channels per shot available for stacking. In this paper, we apply an equivalent offset migration method based on wave scattering theory to process the acoustic reflection imaging log data from both numerical modeling and recorded field data. The result shows that, compared with the routine post-stack depth migration method, the equivalent offset migration method results in higher stack fold and is more effective for near-borehole structural imaging with low SNR acoustic reflection log data.展开更多
To predict sound-absorbing performance of anechoic materials,the acoustic reflection problem of a viscoelastic layer backed with periodically rib-stiffened infinite double plates is studied in this paper.The reason wh...To predict sound-absorbing performance of anechoic materials,the acoustic reflection problem of a viscoelastic layer backed with periodically rib-stiffened infinite double plates is studied in this paper.The reason why structural theories of plates are not applicable to viscoelastic plates is explained through comparing dispersion and attenuation curves of flexural waves with those of Lamb waves.As a result,(visco-)elastic theory is adopted to deal with(visco-)elastic plates,and ribs are treated by structural theories of plates.The coupling between ribs and plates are solved by Hull's method,and solution of the reflected field is obtained.The accuracy of present method is validated by comparing with the results by the structural theories of plates.The influence of a backing on the acoustic reflection of the viscoelatic layer is analyzed by computing reflection coefficients.Performances of different viscoelastic materials are evaluated by the average reflection coefficients.The computational results show that,influence of a backing on the acoustic reflection cannot be suppressed by the viscoelastic materials in low frequencies.The resonance is determined by the coupling of the fluid layer and the double plates.And ribs,which are coupled with the double plates,mainly reduce the acoustic reflection.展开更多
This paper investigates the issues on acoustic energy reflection of flexible film bulk acoustic resonators(FBARs). The flexible FBAR was fabricated with an air cavity in the polymer substrate, which endowed the resona...This paper investigates the issues on acoustic energy reflection of flexible film bulk acoustic resonators(FBARs). The flexible FBAR was fabricated with an air cavity in the polymer substrate, which endowed the resonator with efficient acoustic reflection and high electrical performance. The acoustic wave propagation and reflection in FBAR were first analyzed by Mason model, and then flexible FBARs of 2.66 GHz series resonance in different configurations were fabricated. To validate efficient acoustic reflection of flexible resonators, FBARs were transferred onto different polymer substrates without air cavities. Experimental results indicate that efficient acoustic reflection can be efficiently predicted by Mason model. Flexible FBARs with air cavities exhibit a higher figure of merit(FOM). Our demonstration provides a feasible solution to flexible MEMS devices with highly efficient acoustic reflection(i.e. energy preserving) and free-moving cavities, achieving both high flexibility and high electrical performance.展开更多
A generalized geoacoustic model of fluid mud layer in Chanaiiang Estuary and Hangzhou Bay has been derived from a large amount of in-situ measurements of bulk density (p) profiles of the lay6rs and of lab measurements...A generalized geoacoustic model of fluid mud layer in Chanaiiang Estuary and Hangzhou Bay has been derived from a large amount of in-situ measurements of bulk density (p) profiles of the lay6rs and of lab measurements of acoustic velocities (c) and attenuation coefficients (o) of the fluid mud samples with different values of p for four frequencies of 100 kHz, 150 kHz, 500 kHz, 1500 kHz. The main features of the geoacoustic model can be expressed as follows: from the upper boundary, the bulk density of the fiuid mud increases linearly with depth z, however there is a gradient change (knee) when p is about 12.5 kN/m', then p increases linearly to a value about 15.0 kN/m'. After p more than 15.0, the fluid mud layer quickly transform into an ooze layer. In the fluid mud layer, the acoustic velocity c can be regarded as constant since its variation with z less than 1.5%, and a minimum vaue of c ekists when p is about 13.5 kN/m'. The variations of β with p and with frequency f are linear. Based on the geo-acoustic model and the ray theory, simulations of sound refiection from the fluid mud layers have been made, and some significallt results obtained, from which the bulk density profiles of fluld mud layers can be derived inversely.展开更多
Submarine micro-geomorphology is a geo-morphological type occurring in shallow and surface areas of seabed.The combined relationships and distribution of the micro-geomorphology indirectly reflect coupling relationshi...Submarine micro-geomorphology is a geo-morphological type occurring in shallow and surface areas of seabed.The combined relationships and distribution of the micro-geomorphology indirectly reflect coupling relationships among the sediment deposition,dynamic environment,and geomorphologic evolution.Spatial differentiation and dynamic changes in micro-geomorphology were studied based on acoustic data interpretation from a wide range(3200 km^(2))of the Huanghe(Yellow)River delta(HRD).The combination of the sub-bottom profiler and the side-scan sonar methods allowed for the identification of submarine shallow micro-geomorphologic types,as well as their scale and spatial distributions.There were seven typical micro-geomorphologic features in the shallow and surface areas of the HRD,including buried ancient channels,stratigraphic disturbances,scour troughs,sand waves,pits,erosional remnants,and sand spots.The coupling and superposition of the sediment,sediment characteristics,seabed scouring and silting,and hydrodynamic conditions of the Huanghe River had combined effects on the patterns of micro-geomorphologic types,characteristics,and ranges.From the perspective of acoustic profile interpretations,the scale,range,and spatial locations of the microgeomorphology in the HRD revealed seasonal variation characteristics,and the spatial distributions displayed significant regional differentiation characteristics.In addition,strong stratigraphic disturbances and areas with densely distributed buried ancient channels reflected the activity and instability of the submarine shallow strata.Through the interpretation of the sub-bottom profile detection data,the diversion processes of the flow paths in the lower reaches of the Huanghe River were obtained for a certain historical period in the coastal waters of the HRD.This study further clarified the relationships between the micro-geomorphologic features and spatial combinations,which is important for research on micro-geomorphologic features and their dynamic mechanisms.展开更多
Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, ...Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, the extraction of weak reflected waves becomes pivotal for optimizing migration image quality. This paper introduces a novel approach to extracting reflected waves by sequentially operating in the spatial frequency and curvelet domains. Using variation mode decomposition(VMD), single-channel spatial domain signals within the common offset gather are iteratively decomposed into high-wavenumber and low-wavenumber intrinsic mode functions(IMFs). The low-wavenumber IMF is then subtracted from the overall waveform to attenuate direct mode waves. Subsequently, the curvelet transform is employed to segregate upgoing and downgoing reflected waves within the filtered curvelet domain. As a result, direct mode waves are substantially suppressed, while the integrity of reflected waves is fully preserved. The efficacy of this approach is validated through processing synthetic and field data, underscoring its potential as a robust extraction technique.展开更多
In oil and gas exploitation,cluster well technology can significantly reduce costs and improve efficiency.An effective adjacent well detection method can greatly reduce the risk of collision between adjacent wells.Thi...In oil and gas exploitation,cluster well technology can significantly reduce costs and improve efficiency.An effective adjacent well detection method can greatly reduce the risk of collision between adjacent wells.This study proposes a method to invert the 3D trajectory of an adjacent well using a scattered P-wave obtained by borehole azimuthal acoustic reflection imaging.After obtaining the scattered P-wave from the raw data of the target well using the wave field separation technology,the waveform data in an imaging profile can be obtained by the downhole acoustic directional reception technology.Migration imaging technology is then used to obtain the image of the formation in the imaging profile.Subsequently,by analyzing the images of the formation in the imaging profile of the different azimuths,the well spacing and azimuth of the target well can be determined.Finally,the 3D trajectory of the target well can be obtained by solving the inversion equation.This method was validated by processing the field data from a deviated well in a deep formation.The comparison of the inversion and actual trajectories of the target well demonstrated that the maximum deviation of the inversion trajectory is 0.9 m in the north-south direction,0.78 m in the east-west direction,1.45 m in the well spacing,and 2.48°in the azimuth.The field data inversion result demonstrated that the method can effectively use the azimuth reflection acoustic data to invert the 3D trajectory of an adjacent well,which indicates that the borehole azimuthal acoustic reflection imaging technology has great potential within the context of adjacent well detection.展开更多
based on optimal design on the core element of the sensor,a wireless and passive surface acoustic wave(SAW)temperature sensor integrated with ID Tag was presented.A reflective delay line,which consists of a transduc...based on optimal design on the core element of the sensor,a wireless and passive surface acoustic wave(SAW)temperature sensor integrated with ID Tag was presented.A reflective delay line,which consists of a transducer and eight reflectors on YZ LiNbO3 substrate.Was fabricated as the sensor element,in which,three reflectors were used for temperature sensing,and the other five were for the ID Tag using phase encoding.Single phase unidirectional transducers(SPUDTs)and shorted grating were used to structure the sAW device,leading to excellent signal to noise ratio(SNR).The performance of the SAW device was simulated by the coupling of modes(COM)prior to fabrication.Using the network analyzer,the response in time domain of the fabricated 434 MHz SAW sensor was characterized,the measured S11 agrees well with the simulated one,sharp reflection peaks,high signal/noise,and low spurious noise between the reflection peaks were observed.Using the radar system based on FSCW as the reader unit.the developed SAW temperature sensors were evaluated wirelessly.Excellent1 inearity and good resolution of士1℃ were observed.展开更多
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
基金the National Natural Science Foundation of China (No.10172039).
文摘A finite difference/boundary integral procedure to determine theacoustic reflected pressure from a fluid-loaded bi-laminated plate isdescribed. The bi-laminate is composed of a piezoelectric layer andan elastic layer in contact with the fluid, and is held by anacoustically hard baffle. In the numerical model, the fluid pressureat fluid/solid interface is replaced by a continuum of point sourcesweighted by the normal acceleration of the elastic plate, and thegoverning equation system is solved in the solid domain.
基金Project supported by the National Natural Science Foundation of China(No.10172039).
文摘The acoustic reflected pressure from a periodic elastic/piezoelectric laminated plate is studied for the purpose of acoustic reflection control.A finite difference/boundary integral procedure to determine the reflected pressure from the fluid-loaded plate is described.In the numerical model,a Green's function in the form of infinite sum is employed and a boundary integral is performed to replace the fluid pressure at fluid/solid interface by a continuum of point sources weighted by the normal acceleration of the elastic plate.The equation system is then solved only in the solid domain.It is demonstrated that an appropriate applied voltage potential across the piezoelectric layer has the effect of cancelling the fundamental propagating mode,and there,is no reflection for frequencies up to the cut-off frequency of the next propagating mode if the fundamental mode has been eliminated.
基金supported by the National Natural Science Foundation of China (Grant No.50674098)the 863 Program (Grant No.2006AA06Z207 & 2006AA06Z213)the 973 Program (Grant No.2007CB209601)
文摘Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected waves are interfered with the dominant borehole-guided modes and there are only eight receiving channels per shot available for stacking. In this paper, we apply an equivalent offset migration method based on wave scattering theory to process the acoustic reflection imaging log data from both numerical modeling and recorded field data. The result shows that, compared with the routine post-stack depth migration method, the equivalent offset migration method results in higher stack fold and is more effective for near-borehole structural imaging with low SNR acoustic reflection log data.
基金supported by the Research Funds(9140A10040813CB04001)the Natural Science Foundation of Shandong Province(2013ZRF01039)
文摘To predict sound-absorbing performance of anechoic materials,the acoustic reflection problem of a viscoelastic layer backed with periodically rib-stiffened infinite double plates is studied in this paper.The reason why structural theories of plates are not applicable to viscoelastic plates is explained through comparing dispersion and attenuation curves of flexural waves with those of Lamb waves.As a result,(visco-)elastic theory is adopted to deal with(visco-)elastic plates,and ribs are treated by structural theories of plates.The coupling between ribs and plates are solved by Hull's method,and solution of the reflected field is obtained.The accuracy of present method is validated by comparing with the results by the structural theories of plates.The influence of a backing on the acoustic reflection of the viscoelatic layer is analyzed by computing reflection coefficients.Performances of different viscoelastic materials are evaluated by the average reflection coefficients.The computational results show that,influence of a backing on the acoustic reflection cannot be suppressed by the viscoelastic materials in low frequencies.The resonance is determined by the coupling of the fluid layer and the double plates.And ribs,which are coupled with the double plates,mainly reduce the acoustic reflection.
基金supported by National Natural Science Foundation of China(Grant No.51375341)the National High Technology Research and Development Program of China(“863”Program,Grant No.2015AA042603)the 111 Project(Grant No.B07014)
文摘This paper investigates the issues on acoustic energy reflection of flexible film bulk acoustic resonators(FBARs). The flexible FBAR was fabricated with an air cavity in the polymer substrate, which endowed the resonator with efficient acoustic reflection and high electrical performance. The acoustic wave propagation and reflection in FBAR were first analyzed by Mason model, and then flexible FBARs of 2.66 GHz series resonance in different configurations were fabricated. To validate efficient acoustic reflection of flexible resonators, FBARs were transferred onto different polymer substrates without air cavities. Experimental results indicate that efficient acoustic reflection can be efficiently predicted by Mason model. Flexible FBARs with air cavities exhibit a higher figure of merit(FOM). Our demonstration provides a feasible solution to flexible MEMS devices with highly efficient acoustic reflection(i.e. energy preserving) and free-moving cavities, achieving both high flexibility and high electrical performance.
文摘A generalized geoacoustic model of fluid mud layer in Chanaiiang Estuary and Hangzhou Bay has been derived from a large amount of in-situ measurements of bulk density (p) profiles of the lay6rs and of lab measurements of acoustic velocities (c) and attenuation coefficients (o) of the fluid mud samples with different values of p for four frequencies of 100 kHz, 150 kHz, 500 kHz, 1500 kHz. The main features of the geoacoustic model can be expressed as follows: from the upper boundary, the bulk density of the fiuid mud increases linearly with depth z, however there is a gradient change (knee) when p is about 12.5 kN/m', then p increases linearly to a value about 15.0 kN/m'. After p more than 15.0, the fluid mud layer quickly transform into an ooze layer. In the fluid mud layer, the acoustic velocity c can be regarded as constant since its variation with z less than 1.5%, and a minimum vaue of c ekists when p is about 13.5 kN/m'. The variations of β with p and with frequency f are linear. Based on the geo-acoustic model and the ray theory, simulations of sound refiection from the fluid mud layers have been made, and some significallt results obtained, from which the bulk density profiles of fluld mud layers can be derived inversely.
基金Supported by the General Program of Natural Science Foundation of Shandong Province(No.ZR2020MD063)the Youth Program of Natural Science Foundation of Shandong Province(No.ZR2013DQ025)the National Natural Science Foundation of China and Shandong Province Joint Funds(No.U1706214)。
文摘Submarine micro-geomorphology is a geo-morphological type occurring in shallow and surface areas of seabed.The combined relationships and distribution of the micro-geomorphology indirectly reflect coupling relationships among the sediment deposition,dynamic environment,and geomorphologic evolution.Spatial differentiation and dynamic changes in micro-geomorphology were studied based on acoustic data interpretation from a wide range(3200 km^(2))of the Huanghe(Yellow)River delta(HRD).The combination of the sub-bottom profiler and the side-scan sonar methods allowed for the identification of submarine shallow micro-geomorphologic types,as well as their scale and spatial distributions.There were seven typical micro-geomorphologic features in the shallow and surface areas of the HRD,including buried ancient channels,stratigraphic disturbances,scour troughs,sand waves,pits,erosional remnants,and sand spots.The coupling and superposition of the sediment,sediment characteristics,seabed scouring and silting,and hydrodynamic conditions of the Huanghe River had combined effects on the patterns of micro-geomorphologic types,characteristics,and ranges.From the perspective of acoustic profile interpretations,the scale,range,and spatial locations of the microgeomorphology in the HRD revealed seasonal variation characteristics,and the spatial distributions displayed significant regional differentiation characteristics.In addition,strong stratigraphic disturbances and areas with densely distributed buried ancient channels reflected the activity and instability of the submarine shallow strata.Through the interpretation of the sub-bottom profile detection data,the diversion processes of the flow paths in the lower reaches of the Huanghe River were obtained for a certain historical period in the coastal waters of the HRD.This study further clarified the relationships between the micro-geomorphologic features and spatial combinations,which is important for research on micro-geomorphologic features and their dynamic mechanisms.
基金supported by the National Natural Science Foundation of China (grant No. 42204126, 42174145, 42104132)Laoshan National Laboratory Science and Technology Innovation Project (grant No. LSKJ202203407)。
文摘Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, the extraction of weak reflected waves becomes pivotal for optimizing migration image quality. This paper introduces a novel approach to extracting reflected waves by sequentially operating in the spatial frequency and curvelet domains. Using variation mode decomposition(VMD), single-channel spatial domain signals within the common offset gather are iteratively decomposed into high-wavenumber and low-wavenumber intrinsic mode functions(IMFs). The low-wavenumber IMF is then subtracted from the overall waveform to attenuate direct mode waves. Subsequently, the curvelet transform is employed to segregate upgoing and downgoing reflected waves within the filtered curvelet domain. As a result, direct mode waves are substantially suppressed, while the integrity of reflected waves is fully preserved. The efficacy of this approach is validated through processing synthetic and field data, underscoring its potential as a robust extraction technique.
基金supported by the National Natural Science Foundation of China(grant numbers 12274465,42174218)the Strategic Cooperation Technology Projects of CNPC and CUPB(grant numberZLZX2020-02).
文摘In oil and gas exploitation,cluster well technology can significantly reduce costs and improve efficiency.An effective adjacent well detection method can greatly reduce the risk of collision between adjacent wells.This study proposes a method to invert the 3D trajectory of an adjacent well using a scattered P-wave obtained by borehole azimuthal acoustic reflection imaging.After obtaining the scattered P-wave from the raw data of the target well using the wave field separation technology,the waveform data in an imaging profile can be obtained by the downhole acoustic directional reception technology.Migration imaging technology is then used to obtain the image of the formation in the imaging profile.Subsequently,by analyzing the images of the formation in the imaging profile of the different azimuths,the well spacing and azimuth of the target well can be determined.Finally,the 3D trajectory of the target well can be obtained by solving the inversion equation.This method was validated by processing the field data from a deviated well in a deep formation.The comparison of the inversion and actual trajectories of the target well demonstrated that the maximum deviation of the inversion trajectory is 0.9 m in the north-south direction,0.78 m in the east-west direction,1.45 m in the well spacing,and 2.48°in the azimuth.The field data inversion result demonstrated that the method can effectively use the azimuth reflection acoustic data to invert the 3D trajectory of an adjacent well,which indicates that the borehole azimuthal acoustic reflection imaging technology has great potential within the context of adjacent well detection.
基金supported by the National Nature Science Foundation of China(11074268,10834010)
文摘based on optimal design on the core element of the sensor,a wireless and passive surface acoustic wave(SAW)temperature sensor integrated with ID Tag was presented.A reflective delay line,which consists of a transducer and eight reflectors on YZ LiNbO3 substrate.Was fabricated as the sensor element,in which,three reflectors were used for temperature sensing,and the other five were for the ID Tag using phase encoding.Single phase unidirectional transducers(SPUDTs)and shorted grating were used to structure the sAW device,leading to excellent signal to noise ratio(SNR).The performance of the SAW device was simulated by the coupling of modes(COM)prior to fabrication.Using the network analyzer,the response in time domain of the fabricated 434 MHz SAW sensor was characterized,the measured S11 agrees well with the simulated one,sharp reflection peaks,high signal/noise,and low spurious noise between the reflection peaks were observed.Using the radar system based on FSCW as the reader unit.the developed SAW temperature sensors were evaluated wirelessly.Excellent1 inearity and good resolution of士1℃ were observed.