Two dehydroabietic acid-based arylamines have been synthesized and characterized by FTIR, 1H NMR, 13C NMR, MS spectra and elemental analysis. Their spatial structures were determined by X-ray diffraction analysis. UV-...Two dehydroabietic acid-based arylamines have been synthesized and characterized by FTIR, 1H NMR, 13C NMR, MS spectra and elemental analysis. Their spatial structures were determined by X-ray diffraction analysis. UV-Vis absorption and fluorescence spectral characteristics of these compounds in methanol were investigated. Their fluorescence emission spectra in different polarity solvents were further evaluated. Fluorescent properties and structural relationship of the compounds showed that fluorescence intensity and quantum yield inversely increase with the non-coplanar degree. In addition, the solvent polarity has different effects on the fluorescence emission spectra of two compounds.展开更多
In this review,we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus(HCV)infection.Because the HCV genome is present exclusively in RNA form during replication,various...In this review,we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus(HCV)infection.Because the HCV genome is present exclusively in RNA form during replication,various nucleic acid-based therapeutic approaches targeting the HCV genome,such as ribozymes,aptamers,siRNAs,and antisense oligonucleotides,have been suggested as potential tools against HCV.Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics.These limitations have hampered the clinical development of nucleic acid-based therapeutics.However,despite these limitations,nucleic acid-based therapeutics has clinical value due to their great specificity,easy and large-scale synthesis with chemical methods,and pharmaceutical flexibility.Moreover,nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle,and therefore they may prove to be more effective than existing therapeutics,such as interferon-αand ribavirin combination therapy.This review focuses on the current status and future prospects of ribozymes,aptamers,siRNAs,and antisense oligonucleotides as therapeutic reagents against HCV.展开更多
The application of amino acid-based surfactant in dishwasher detergent was studied in this paper. The foam and oil-removing performance of amino acid surfactants in alkaline condition were test to discuss feasibility ...The application of amino acid-based surfactant in dishwasher detergent was studied in this paper. The foam and oil-removing performance of amino acid surfactants in alkaline condition were test to discuss feasibility of amino acid-based surfactant from natural origin as the alternative to traditional nonionic surfactants from petroleum origin in dishwasher detergent. Comparative study was conducted through using various amino acid-based surfactants and nonionic surfactants respectively, together with enzymes and peroxide to formulate dishwasher detergents, and their application properties such as foam performance and detergency were also evaluated when washing different tableware in automatic dishwasher. The results showed that among all tested amino acid surfactants, glutamate surfactants showed low foaming and high oil-removing ability in alkaline condition, and excellent decontamination ability in dishwashing tests.展开更多
The most widely used bisphenol A-type epoxy resin(DGEBA)in electrical engineering demonstrates excellent mechanical and electrical properties.However,the insoluble and infusible characteristics of cured DGEBA make it ...The most widely used bisphenol A-type epoxy resin(DGEBA)in electrical engineering demonstrates excellent mechanical and electrical properties.However,the insoluble and infusible characteristics of cured DGEBA make it difficult to efficiently degrade and recycle decommissioned electrical equipment.In this study,a degradable itaconic acid-based epoxy resin incorporating dynamic covalent bonds was prepared through the integration of ester bonds and disulfide bonds,with itaconic acid as the precursor.The covalent bonding effects on the mechanical,thermal,electrical,and degradation characteristics were systematically evaluated.The experimental results revealed that the introduction of dynamic ester bonds enhanced the mechanical properties and thermal stability of the resin system,achieving a flexural strength of 141.57 MPa and an initial decomposition temperature T_(5%)of up to 344.9℃.The resin system containing dynamic disulfide bonds exhibited a dielectric breakdown strength of 41.11 k V/mm.Simultaneously,the incorporation of disulfide bonds endowed the epoxy resin with remarkable degradability,enabling complete dissolution within 1.5 h at 90℃ in a mixed solution of dithiothreitol(DTT)and N-methylpyrrolidone(NMP).This research provides a valuable reference for the application of itaconic acid-based vitrimer with dynamic covalent bonds in electrical materials,contributing to the development and utilization of environmentally friendly electrical equipment.展开更多
With more and more lithium-ion batteries(LIBs)being put into production and application,precious metals such as lithium and cobalt are scarce,so it is imminent to recover various strategic metal resources from spent L...With more and more lithium-ion batteries(LIBs)being put into production and application,precious metals such as lithium and cobalt are scarce,so it is imminent to recover various strategic metal resources from spent LIBs.Meanwhile,the complex and difficult problem of separating and recovering metals from leaching solutions has been an urgent question that needs to be resolved.In this work,a phosphoric acid-based deep eutectic solvent(DES)was developed for extracting metals from spent LIBs and one-step selectively separating and efficiently recovering transition metal.The prepared DES shows excellent extraction performance for Li(100%)and Co(92.8%)at 100°C.In addition,the extraction system can effectively separate and precipitate Co through its own components,avoiding the introduction of new precipitants and the destruction of the original composition structure of DES.This also contributes to the good cycle stability of the extraction system with excellent extraction performance for Li(94.3%)and Co(80.8%)after 5 cycles.This work proposes a green method for one-step selectively separating and recovering valuable metals from spent LIBs.展开更多
Background:Exclusive enteral nutrition(EEN)therapy effectively induces remission in pediatric Crohn’s disease(CD).However,this may depend on the type of enteral formula used.Moreover,data on the efficacy of amino aci...Background:Exclusive enteral nutrition(EEN)therapy effectively induces remission in pediatric Crohn’s disease(CD).However,this may depend on the type of enteral formula used.Moreover,data on the efficacy of amino acid-based EEN are limited.Thus,we aimed to prospectively evaluate the efficacy of amino acid-based formulas for EEN in pediatric patients with active CD.Methods:Patients with active CD aged between 6 and 17years were recruited into this prospective study from four hospitals in China between March 2019 and December 2021.Patients received EEN for 8weeks.Inflammatory and nutrition-associated indices were evaluated at 0,4,and 8weeks after treatment.Paired t-tests and Wilcoxon signed-rank tests were used to compare continuous and categorical variables before and after intervention,respectively.Results:Twenty-four patients were included in the analysis.After an 8-week intervention period,the CD activity index significantly decreased(26.3±12.2 vs 7.1±8.3,P<0.001).Most patients(66.7%)achieved complete clinical remission.Among the 22 patients who had ulcers and erosions diagnosed endoscopically at baseline,10(45.5%)achieved complete mucosal healing.The degree of thickening of the intestinal wall was significantly reduced after EEN intervention,with a transmural healing rate of 42.9%.Furthermore,the serum inflammatory markers decreased and there was a significant improvement in the nutrition-related indices(P<0.05).There were no severe adverse effects.Conclusions:Amino acid-based EEN is effective and safe for treating pediatric-onset CD.Studies with larger sample sizes and mechanistic and follow-up studies are required to further validate these findings.展开更多
Up to now,how the secretion modes of intestinal fluid(i.e.,pancreaticobiliary secretion and wall secretion)can regulate intestinal acid-base environment has not been fully understood.Understanding the regulation mecha...Up to now,how the secretion modes of intestinal fluid(i.e.,pancreaticobiliary secretion and wall secretion)can regulate intestinal acid-base environment has not been fully understood.Understanding the regulation mechanism is not only of great significance for intestinal health but may also lead to optimized designs for bio-inspired soft elastic reactors(SERs).In this work,the mixing and reaction of acidic gastric juice and alkaline intestinal fluid in a 3D duodenum with moving walls were modelled.A unique feature of this model is the implementation of both pancreaticobiliary and wall secretion of intestinal fluid as boundary conditions.This model allowed us to quantitatively explore the influence of secretion modes on pH regulation.The results demonstrated that coexistence of both pancreaticobiliary and wall secretions is the key to maintain the average pH in the duodenum at about 7.4.Their coexistence synergistically promotes the mixing and reaction of acid-base digestion liquids and provides a suitable catalytic environment for lipase in the intestine.展开更多
Infectious diseases,mostly caused by bacteria and viruses but also a result of fungal and parasitic infection,have been one of the most important public health concerns throughout human history.The first step in comba...Infectious diseases,mostly caused by bacteria and viruses but also a result of fungal and parasitic infection,have been one of the most important public health concerns throughout human history.The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost.Many kinds of diagnostics have been developed,such as pathogen culture,biochemical tests and serological tests,to help detect and fight against the causative agents of diseases.However,these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results.Nucleic acid-based diagnostics,detecting pathogens through the identification of their genomic sequences,have shown promise to overcome the above limitations and become more widely adopted in clinical tests.Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage.We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.展开更多
A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and in vitro fluorescence imaging. The geometries as well as...A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and in vitro fluorescence imaging. The geometries as well as their molecular properties were optimized at the B3LYP/6-31G~* level using Gaussian 03. The results indicate that molecular geometry, HOMO and LUMO energies, and energy gaps are important to predict absorption and fluorescent properties. Five of the compounds can be effectively taken up by human cervical carcinoma, human hepatocellular carcinoma SMMC-7721, human gastric cancer SGC-7901 and human lung adenocarcinoma A549 cells and strong blue fluorescent signals are detected in these cells. These compounds are potential candidates for fluorescent probes in biological diagnosis.展开更多
The more than three decades of research in nucleic acid nanotechnology has led to the thrilling progress in rationally designed structures and artificial molecular devices with programmable functions and various appli...The more than three decades of research in nucleic acid nanotechnology has led to the thrilling progress in rationally designed structures and artificial molecular devices with programmable functions and various applications.Nucleic acid–based aggregates feature precise molecular recognition and sequence programmability,versatility,as well as marked biocompatibility,providing promising candidates for biomedical applications.In this minireview,we summarize the recent,successful efforts to construct and employ nucleic acid–based aggregates for biomedical applications,including drug delivery,bioimaging,biosensing,cell analysis,and combined cancer therapy.We also discuss the remaining challenges and opportunities in the field.展开更多
Perivascular delivery of therapeutic agents against established aetiologies for occlusive vascular remodelling has great therapeutic potential for vein graft failure.However,none of the perivascular drug delivery syst...Perivascular delivery of therapeutic agents against established aetiologies for occlusive vascular remodelling has great therapeutic potential for vein graft failure.However,none of the perivascular drug delivery systems tested experimentally have been translated into clinical practice.In this study,we established a novel strategy to locally and sustainably deliver the cyclin-dependent kinase 8/19 inhibitor Senexin A(SenA),an emerging drug candidate to treat occlusive vascular disease,using graphene oxide-hybridised hyaluronic acid-based hydrogels.We demonstrated an approach to accommodate SenA in hyaluronic acid-based hydrogels through utilising graphene oxide nanosheets allowing for non-covalent interaction with SenA.The resulting hydrogels produced sustained delivery of SenA over 21 days with tunable release kinetics.In vitro assays also demonstrated that the hydrogels were biocompatible.This novel graphene oxide-incorporated hyaluronic acid hydrogel offers an optimistic outlook as a perivascular drug delivery system for treating occlusive vascular diseases,such as vein graft failure.展开更多
Heavy oil millisecond gas-phase in-line catalytic dehydrogenation over bifunctional catalysts was adopted to produce low-carbon olefins.In this study,the effect of the uncatalyzed reaction composition and distribution...Heavy oil millisecond gas-phase in-line catalytic dehydrogenation over bifunctional catalysts was adopted to produce low-carbon olefins.In this study,the effect of the uncatalyzed reaction composition and distribution of atmosphere residue(AR)pyrolysis vapor at 650℃ was investigated for the first time.In the pyrolysis vapor,the yield of low-carbon olefins was only 15.2%.The yield of 1-olefin and n-alkanes,which are the primary products of rapid heavy oil pyrolysis,reached approximately 54.0%.To achieve further catalytic dehydrogenation,AR pyrolysis volatiles were catalyzed over single calcium aluminate(C_(12)A_(7)),ZSM-5,and C_(12)A_(7)-ZSM-5(CZ)catalysts at 650℃,which possess different pore structures,and acid-base properties.The ZSM-5 catalyst obtained the highest low-carbon olefin yield after catalytic dehydrogenation of pyrolysis volatiles.Finally,the C_(12)A_(7) and CZ stepwise coupling bifunctional catalysts increased the catalytic activity,and thus increased the higher low-carbon olefin yield but reduced the yields of alkanes and aromatics fraction.Notably,the yields of propylene and butane were important sources of the low-carbon olefins.Thus,heavy oil millisecond gas-phase in-line catalytic dehydrogenation could achieve the maximum conversion of these residues to produce low-carbon olefins.展开更多
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c...The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.展开更多
Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system,with the solid-electrolyte membrane playing a crucial role in its overall performance.Currently,sulfonated poly(1,4-phenylene...Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system,with the solid-electrolyte membrane playing a crucial role in its overall performance.Currently,sulfonated poly(1,4-phenylene ether-ether sulfone)(SPEES),an aromatic hydrocarbon polymer,has garnered considerable attention as an alternative to Nafion polymers.However,the long-term durability and stability of SPEES present a significant challenge.In this context,we introduce a potential solution in the form of an additive,specifically a core–shell-based amine-functionalized iron titanate (A–Fe_(2)TiO_(5)),which holds promise for improving the lifetime,proton conductivity,and power density of SPEES in PEMFCs.The modified SPEES/A–Fe_(2)TiO_(5)composite membranes exhibited notable characteristics,including high water uptake,enhanced thermomechanical stability,and oxidative stability.Notably,the SPEES membrane loaded with 1.2 wt%of A–Fe_(2)TiO_(5)demonstrates a maximum proton conductivity of 155 mS ccm^(-1),a twofold increase compared to the SPEES membrane,at 80°C under 100%relative humidity (RH).Furthermore,the 1.2 wt%of A–Fe_(2)TiO_(5)/SPEES composite membranes exhibited a maximum power density of 397.37 mW cm^(-2)and a current density of 1148 mA cm^(-2)at 60°C under 100%RH,with an opencircuit voltage decay of 0.05 m V/h during 103 h of continuous operation.This study offers significant insights into the development and understanding of innovative SPEES nanocomposite membranes for PEMFC applications.展开更多
Lithium metal batteries,with their light mass anode and high theoretical specific capacity of 3860 m Ah/g,have great potential for development in achieving high energy density.However,the generation of lithium dendrit...Lithium metal batteries,with their light mass anode and high theoretical specific capacity of 3860 m Ah/g,have great potential for development in achieving high energy density.However,the generation of lithium dendrites and the loss of dead lithium pose a serious threat to the safety and long-cycle stability of batteries.Herein,we utilize the Lewis acid-base interaction principle for lithium-ion migration regulation.Through loading solid-acids onto molecular sieves to immobilize Lewis base(PF_(6^(-))),we achieve accelerated dissociation of lithium salts and successfully increase the lithium ion transference number to 0.44.Lewis acid-base interaction helps lithium metal batteries achieve more uniform lithium deposition,with an average CE improved to 92.8%.The symmetrical cells can be plated/stripped stably for more than 800 h of cycling.Full cell with high surface-loaded LFP cathode(14 mg/cm^(2))exhibits impressively high capacity retention of 90.7%after 120 cycles at 0.5 C.展开更多
The alkaline hydrogen evolution reaction(HER)is a crucial process for sustainable hydrogen production,yet it requires efficient and stable electrocatalysts to overcome the high activation energy barrier.The article di...The alkaline hydrogen evolution reaction(HER)is a crucial process for sustainable hydrogen production,yet it requires efficient and stable electrocatalysts to overcome the high activation energy barrier.The article discusses a novel strategy for enhancing the performance of Ni-Fe layered double hydroxide(Ni-Fe LDH)in the alkaline HER by modifying it with a frustrated Lewis acid-base pair(FLP)constructed through vacancy engineering.The study found that the modified Ni-Fe LDH exhibited improved alkaline HER performance.Density functional theory(DFT)calculations demonstrate that the introduction of FLP can activate water and protons more efficiently than monometallic sites,thus reducing the alkaline HER energy barrier and overpotential.In HER under alkaline conditions,the Volmer step involves an additional hydrolysis dissociation compared to acidic conditions,which is one of the factors contributing to the slow reaction kinetics.This paper demonstrates that FLPs can alter the rate-determining step in alkaline HER from the Volmer step to a step with a lower energy barrier,more suitable for hydrogen desorption.The work provides new insights into the role of FLPs in regulating the mechanism and kinetics of HER and opens a new direction for the design and optimization of LDH-based and other electrocatalysts.展开更多
Acetol is a major light oxygenate and readily produced from staged or fast pyrolysis of lignocellulose biomass. Herein we report that acetol can be selectively converted to methyl pyruvate, an important fine chemical,...Acetol is a major light oxygenate and readily produced from staged or fast pyrolysis of lignocellulose biomass. Herein we report that acetol can be selectively converted to methyl pyruvate, an important fine chemical, through oxidative esterification over Au-based catalysts. Detailed experimental studies showed that Au on amphoteric supports with appropriate strength and balanced ratio of acid and base sites can facilitate the desired oxidative-esterification pathway without accelerating undesired aldol-condensation or Cannizzaro reactions. In particular, hydroxyapatite (with a Ca/P ratio of 1.62) supported Au achieved 87% selectivity to methyl pyruvate at an acetol conversion of 62%.展开更多
As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in thi...As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and p H value based on acidbase potentiometric titration reaction.The distribution curves of alendronate sodium were drawn according to the determined p Ka values.There were 4 dissociation constants(pKa_1=2.43,pKa_2=7.55,pKa_3=10.80,pKa_4=11.99,respectively) of alendronate sodium,and 12 existing forms,of which 4 could be ignored,existing in different p H environments.展开更多
5-Hydroxymethylfurfural(5-HMF),as a key platform compound for the conversion of biomass to various biomass-derived chemicals and biofuels,has been attracted extensive attention.In this research,using Pickering high in...5-Hydroxymethylfurfural(5-HMF),as a key platform compound for the conversion of biomass to various biomass-derived chemicals and biofuels,has been attracted extensive attention.In this research,using Pickering high internal phase emulsions(Pickering HIPEs)as template and functional metal-organic frameworks(MOFs,UiO-66-SO;H and UiO-66-NH;)/Tween 85 as co-stabilizers to synthesis the dual acid-base bifunctional macroporous polymer catalyst by one-pot process,which has excellent catalytic activity in the cascade reaction of converting cellulose to 5-HMF.The effects of the emulsion parameters including the amount of surfactant(ranging from 0.5%to 2.0%(mass)),the internal phase volume fraction(ranging from 75%to 90%)and the acid/base Pickering particles mass ratio(ranging from 0:6 to 6:0)on the morphology and catalytic performance of solid catalyst were systematically researched.The results of catalytic experiments suggested that the connected large pore size of catalyst can effectively improve the cellulose conversion,and the synergistic effect of acid and base active sites can effectively improve the 5-HMF yield.The highest 5-HMF yield,about 40.5%,can be obtained by using polymer/MOFs composite as catalyst(Poly-P12,the pore size of(53.3±11.3)μm,the acid density of 1.99 mmol·g^(-1)and the base density of 1.13 mol·g^(-1))under the optimal reaction conditions(130℃,3 h).Herein,the polymer/MOFs composite with open-cell structure was prepared by the Pickering HIPEs templating method,which provided a favorable experimental basis and theoretical reference for achieving efficient production of high addedvalue product from abundant biomass.展开更多
Objective:To improve the diagnosis and therapeutic effect of occurrence and development of hyponatremia and disorder of acid-base balance among patients with hepatic encephalopathy(HE) by elucidating the regularity an...Objective:To improve the diagnosis and therapeutic effect of occurrence and development of hyponatremia and disorder of acid-base balance among patients with hepatic encephalopathy(HE) by elucidating the regularity and mechanism,as well as its influence on prognosis.Methods:327 HE patients admitted to our hospital from January 1990 to June 2010 were enrolled.Meanwhile 316 patients hospitalized in the medical department of the same hospital were chosen as the control group.Patients in both groups were given the same methods to measure arterial blood gas parameters(pH value,PaCO2,[HCO3-],TCO2,BE and SaO2),blood biochemistry([Na+],[K+],[Cl-]),liver function,kidney function and blood glucose,serum sodium,and thereupon tocalculate the anion gap(AG) and the potential [HCO3-],and acid-base balance disorder.Results:Among the 327 HE patients,hyponatremia was found in 188 cases(57.4%),of whom 132 patients died(70.2%).While among the 316 patients in control group,68 presented with hyponatremia(21.5%),and 19 died(27.9%).The incidence and mortality were significantly different between the two groups(P<0.001).All the 327 patients presented with different degrees of acid-base balance disorder and 178 died(54.4%),in whom 164(50.2%) belonged to simple acid-base balance disorder and 74(45.1%) died,136(41.6%) were dual acid-base balance disorder and 80(58.8%) died,27(8.2%) were triple acid-base disturbance and 24(88.9%) died.Whereas in the control group only 83 patients(26.2%) were recognized as simple and dual acid-base balance disorder,and 18(21.7%) died.There was higher incidence of acid-base balance disorder and mortality rate in HE group than control one(P<0.001).Conclusion:Hyponatremia is valuable to judge HE patients' prognosis.The key parameters in the judgment and evaluation on acid-base balance disorder among HE patients are the change of pH values and serum electrolyte values.When pH value ≤ 7.30 or > 7.55,it generally suggests a poor prognosis.展开更多
基金supported by the National Natural Science Foundation of China (No. 31170539)
文摘Two dehydroabietic acid-based arylamines have been synthesized and characterized by FTIR, 1H NMR, 13C NMR, MS spectra and elemental analysis. Their spatial structures were determined by X-ray diffraction analysis. UV-Vis absorption and fluorescence spectral characteristics of these compounds in methanol were investigated. Their fluorescence emission spectra in different polarity solvents were further evaluated. Fluorescent properties and structural relationship of the compounds showed that fluorescence intensity and quantum yield inversely increase with the non-coplanar degree. In addition, the solvent polarity has different effects on the fluorescence emission spectra of two compounds.
基金Supported by National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning No.2012M3A9B6055200,No.2013R1A2A2A01004649
文摘In this review,we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus(HCV)infection.Because the HCV genome is present exclusively in RNA form during replication,various nucleic acid-based therapeutic approaches targeting the HCV genome,such as ribozymes,aptamers,siRNAs,and antisense oligonucleotides,have been suggested as potential tools against HCV.Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics.These limitations have hampered the clinical development of nucleic acid-based therapeutics.However,despite these limitations,nucleic acid-based therapeutics has clinical value due to their great specificity,easy and large-scale synthesis with chemical methods,and pharmaceutical flexibility.Moreover,nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle,and therefore they may prove to be more effective than existing therapeutics,such as interferon-αand ribavirin combination therapy.This review focuses on the current status and future prospects of ribozymes,aptamers,siRNAs,and antisense oligonucleotides as therapeutic reagents against HCV.
文摘The application of amino acid-based surfactant in dishwasher detergent was studied in this paper. The foam and oil-removing performance of amino acid surfactants in alkaline condition were test to discuss feasibility of amino acid-based surfactant from natural origin as the alternative to traditional nonionic surfactants from petroleum origin in dishwasher detergent. Comparative study was conducted through using various amino acid-based surfactants and nonionic surfactants respectively, together with enzymes and peroxide to formulate dishwasher detergents, and their application properties such as foam performance and detergency were also evaluated when washing different tableware in automatic dishwasher. The results showed that among all tested amino acid surfactants, glutamate surfactants showed low foaming and high oil-removing ability in alkaline condition, and excellent decontamination ability in dishwashing tests.
基金financially supported by the National Natural Science Foundation of China(No.52377025)。
文摘The most widely used bisphenol A-type epoxy resin(DGEBA)in electrical engineering demonstrates excellent mechanical and electrical properties.However,the insoluble and infusible characteristics of cured DGEBA make it difficult to efficiently degrade and recycle decommissioned electrical equipment.In this study,a degradable itaconic acid-based epoxy resin incorporating dynamic covalent bonds was prepared through the integration of ester bonds and disulfide bonds,with itaconic acid as the precursor.The covalent bonding effects on the mechanical,thermal,electrical,and degradation characteristics were systematically evaluated.The experimental results revealed that the introduction of dynamic ester bonds enhanced the mechanical properties and thermal stability of the resin system,achieving a flexural strength of 141.57 MPa and an initial decomposition temperature T_(5%)of up to 344.9℃.The resin system containing dynamic disulfide bonds exhibited a dielectric breakdown strength of 41.11 k V/mm.Simultaneously,the incorporation of disulfide bonds endowed the epoxy resin with remarkable degradability,enabling complete dissolution within 1.5 h at 90℃ in a mixed solution of dithiothreitol(DTT)and N-methylpyrrolidone(NMP).This research provides a valuable reference for the application of itaconic acid-based vitrimer with dynamic covalent bonds in electrical materials,contributing to the development and utilization of environmentally friendly electrical equipment.
基金the financial support for the financial supports from the National Natural Science Foundation of China(grant Nos.21908082,22278426,21878133,and 22178154)the Natural Science Foundation of Jiangsu Province(BK20190854)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB629)the China Postdoctoral Science Foundation(2021M701472)
文摘With more and more lithium-ion batteries(LIBs)being put into production and application,precious metals such as lithium and cobalt are scarce,so it is imminent to recover various strategic metal resources from spent LIBs.Meanwhile,the complex and difficult problem of separating and recovering metals from leaching solutions has been an urgent question that needs to be resolved.In this work,a phosphoric acid-based deep eutectic solvent(DES)was developed for extracting metals from spent LIBs and one-step selectively separating and efficiently recovering transition metal.The prepared DES shows excellent extraction performance for Li(100%)and Co(92.8%)at 100°C.In addition,the extraction system can effectively separate and precipitate Co through its own components,avoiding the introduction of new precipitants and the destruction of the original composition structure of DES.This also contributes to the good cycle stability of the extraction system with excellent extraction performance for Li(94.3%)and Co(80.8%)after 5 cycles.This work proposes a green method for one-step selectively separating and recovering valuable metals from spent LIBs.
基金supported by the Guangdong Provincial Key Laboratory of Microecological Preparations[grant number 2022B1212020004]the Medical Scientific Research Foundation of Guangdong Province of China[grant number A2022099]the program of Guangdong Provincial Clinical Research Center for Digestive Diseases[grant number 2020B1111170004].
文摘Background:Exclusive enteral nutrition(EEN)therapy effectively induces remission in pediatric Crohn’s disease(CD).However,this may depend on the type of enteral formula used.Moreover,data on the efficacy of amino acid-based EEN are limited.Thus,we aimed to prospectively evaluate the efficacy of amino acid-based formulas for EEN in pediatric patients with active CD.Methods:Patients with active CD aged between 6 and 17years were recruited into this prospective study from four hospitals in China between March 2019 and December 2021.Patients received EEN for 8weeks.Inflammatory and nutrition-associated indices were evaluated at 0,4,and 8weeks after treatment.Paired t-tests and Wilcoxon signed-rank tests were used to compare continuous and categorical variables before and after intervention,respectively.Results:Twenty-four patients were included in the analysis.After an 8-week intervention period,the CD activity index significantly decreased(26.3±12.2 vs 7.1±8.3,P<0.001).Most patients(66.7%)achieved complete clinical remission.Among the 22 patients who had ulcers and erosions diagnosed endoscopically at baseline,10(45.5%)achieved complete mucosal healing.The degree of thickening of the intestinal wall was significantly reduced after EEN intervention,with a transmural healing rate of 42.9%.Furthermore,the serum inflammatory markers decreased and there was a significant improvement in the nutrition-related indices(P<0.05).There were no severe adverse effects.Conclusions:Amino acid-based EEN is effective and safe for treating pediatric-onset CD.Studies with larger sample sizes and mechanistic and follow-up studies are required to further validate these findings.
基金the National Natural Science Foundation of China(21978184)the“Jiangsu Innovation and Entrepreneurship(Shuang Chuang)Program”,the“Jiangsu Specially-Appointed Professors Program”the“Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions”.
文摘Up to now,how the secretion modes of intestinal fluid(i.e.,pancreaticobiliary secretion and wall secretion)can regulate intestinal acid-base environment has not been fully understood.Understanding the regulation mechanism is not only of great significance for intestinal health but may also lead to optimized designs for bio-inspired soft elastic reactors(SERs).In this work,the mixing and reaction of acidic gastric juice and alkaline intestinal fluid in a 3D duodenum with moving walls were modelled.A unique feature of this model is the implementation of both pancreaticobiliary and wall secretion of intestinal fluid as boundary conditions.This model allowed us to quantitatively explore the influence of secretion modes on pH regulation.The results demonstrated that coexistence of both pancreaticobiliary and wall secretions is the key to maintain the average pH in the duodenum at about 7.4.Their coexistence synergistically promotes the mixing and reaction of acid-base digestion liquids and provides a suitable catalytic environment for lipase in the intestine.
基金supported by grants from the National Key Technology R&D Program(No.2008BAK41B01-5)the National Science and Technology Major Project—Development New Genetically Modified Organism(No.2009ZX08012-006B).
文摘Infectious diseases,mostly caused by bacteria and viruses but also a result of fungal and parasitic infection,have been one of the most important public health concerns throughout human history.The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost.Many kinds of diagnostics have been developed,such as pathogen culture,biochemical tests and serological tests,to help detect and fight against the causative agents of diseases.However,these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results.Nucleic acid-based diagnostics,detecting pathogens through the identification of their genomic sequences,have shown promise to overcome the above limitations and become more widely adopted in clinical tests.Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage.We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.
基金supported by the National Natural Science Foundation of China (31670576)Introduction of the International Advanced Forestry Science and Technology Program (20154-44)
文摘A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and in vitro fluorescence imaging. The geometries as well as their molecular properties were optimized at the B3LYP/6-31G~* level using Gaussian 03. The results indicate that molecular geometry, HOMO and LUMO energies, and energy gaps are important to predict absorption and fluorescent properties. Five of the compounds can be effectively taken up by human cervical carcinoma, human hepatocellular carcinoma SMMC-7721, human gastric cancer SGC-7901 and human lung adenocarcinoma A549 cells and strong blue fluorescent signals are detected in these cells. These compounds are potential candidates for fluorescent probes in biological diagnosis.
基金National Natural Science Foundation of China,Grant/Award Numbers:22025201,32071389,31700871,51761145044,21721002National Basic Research Program of China,Grant/Award Numbers:2016YFA0201601,2018YFA0208900+4 种基金Beijing Municipal Science&TechnologyCommission,Grant/Award Number:Z191100004819008KeyResearch Program of Frontier Sciences,CAS,Grant/Award Number:QYZDBSSW-SLH029Strategic Priority Research Program of Chinese Academy of Sciences,Grant/Award Number:XDB36000000CAS Interdisciplinary Innovation Team,and the K.C.Wong Education Foundation,Grant/Award Number:GJTD-2018-03Youth Innovation Promotion Association,CAS。
文摘The more than three decades of research in nucleic acid nanotechnology has led to the thrilling progress in rationally designed structures and artificial molecular devices with programmable functions and various applications.Nucleic acid–based aggregates feature precise molecular recognition and sequence programmability,versatility,as well as marked biocompatibility,providing promising candidates for biomedical applications.In this minireview,we summarize the recent,successful efforts to construct and employ nucleic acid–based aggregates for biomedical applications,including drug delivery,bioimaging,biosensing,cell analysis,and combined cancer therapy.We also discuss the remaining challenges and opportunities in the field.
基金The work was supported by United States NIH under the award Nos.R01 GM136877(to QW,JF),R43 HL137525(to TC),R21 EB022131(to TC),P20 GM1090991(to TC),and R01 HL160541(to TC).
文摘Perivascular delivery of therapeutic agents against established aetiologies for occlusive vascular remodelling has great therapeutic potential for vein graft failure.However,none of the perivascular drug delivery systems tested experimentally have been translated into clinical practice.In this study,we established a novel strategy to locally and sustainably deliver the cyclin-dependent kinase 8/19 inhibitor Senexin A(SenA),an emerging drug candidate to treat occlusive vascular disease,using graphene oxide-hybridised hyaluronic acid-based hydrogels.We demonstrated an approach to accommodate SenA in hyaluronic acid-based hydrogels through utilising graphene oxide nanosheets allowing for non-covalent interaction with SenA.The resulting hydrogels produced sustained delivery of SenA over 21 days with tunable release kinetics.In vitro assays also demonstrated that the hydrogels were biocompatible.This novel graphene oxide-incorporated hyaluronic acid hydrogel offers an optimistic outlook as a perivascular drug delivery system for treating occlusive vascular diseases,such as vein graft failure.
基金the financial sponsored by the CNPC Innovation Found(No.2022DQ02-0402)the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBMS-085)+2 种基金Shandong Provincial Postdoctoral Science Foundation(No.SDCX-ZG-202303044)the State Key Laboratory of Heavy Oil Processing(No.SKLHOP202201004,No.SKLHOP202403001)the Graduate Student Innovation and Practical Ability Training Program of Xi'an Shiyou University(No.YCS23213078).
文摘Heavy oil millisecond gas-phase in-line catalytic dehydrogenation over bifunctional catalysts was adopted to produce low-carbon olefins.In this study,the effect of the uncatalyzed reaction composition and distribution of atmosphere residue(AR)pyrolysis vapor at 650℃ was investigated for the first time.In the pyrolysis vapor,the yield of low-carbon olefins was only 15.2%.The yield of 1-olefin and n-alkanes,which are the primary products of rapid heavy oil pyrolysis,reached approximately 54.0%.To achieve further catalytic dehydrogenation,AR pyrolysis volatiles were catalyzed over single calcium aluminate(C_(12)A_(7)),ZSM-5,and C_(12)A_(7)-ZSM-5(CZ)catalysts at 650℃,which possess different pore structures,and acid-base properties.The ZSM-5 catalyst obtained the highest low-carbon olefin yield after catalytic dehydrogenation of pyrolysis volatiles.Finally,the C_(12)A_(7) and CZ stepwise coupling bifunctional catalysts increased the catalytic activity,and thus increased the higher low-carbon olefin yield but reduced the yields of alkanes and aromatics fraction.Notably,the yields of propylene and butane were important sources of the low-carbon olefins.Thus,heavy oil millisecond gas-phase in-line catalytic dehydrogenation could achieve the maximum conversion of these residues to produce low-carbon olefins.
基金supported by Shanxi Province Science Foundation for Youths(202203021212300)Taiyuan University of Science and Technology Scientific Research Initial Funding(20212064)Outstanding Doctoral Award Fund in Shanxi Province(20222060).
文摘The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.
基金BK21 FOUR Program by Jeonbuk National University Research Grantsupported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE)(2023RIS-008)H2KOREA funded by the Ministry of Education(2024 Hydrogen Industry-002, Innovative Human Resources Development Project for Hydrogen Industry)。
文摘Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system,with the solid-electrolyte membrane playing a crucial role in its overall performance.Currently,sulfonated poly(1,4-phenylene ether-ether sulfone)(SPEES),an aromatic hydrocarbon polymer,has garnered considerable attention as an alternative to Nafion polymers.However,the long-term durability and stability of SPEES present a significant challenge.In this context,we introduce a potential solution in the form of an additive,specifically a core–shell-based amine-functionalized iron titanate (A–Fe_(2)TiO_(5)),which holds promise for improving the lifetime,proton conductivity,and power density of SPEES in PEMFCs.The modified SPEES/A–Fe_(2)TiO_(5)composite membranes exhibited notable characteristics,including high water uptake,enhanced thermomechanical stability,and oxidative stability.Notably,the SPEES membrane loaded with 1.2 wt%of A–Fe_(2)TiO_(5)demonstrates a maximum proton conductivity of 155 mS ccm^(-1),a twofold increase compared to the SPEES membrane,at 80°C under 100%relative humidity (RH).Furthermore,the 1.2 wt%of A–Fe_(2)TiO_(5)/SPEES composite membranes exhibited a maximum power density of 397.37 mW cm^(-2)and a current density of 1148 mA cm^(-2)at 60°C under 100%RH,with an opencircuit voltage decay of 0.05 m V/h during 103 h of continuous operation.This study offers significant insights into the development and understanding of innovative SPEES nanocomposite membranes for PEMFC applications.
基金supported by the National Natural Science Foundation of China(No.22179007)。
文摘Lithium metal batteries,with their light mass anode and high theoretical specific capacity of 3860 m Ah/g,have great potential for development in achieving high energy density.However,the generation of lithium dendrites and the loss of dead lithium pose a serious threat to the safety and long-cycle stability of batteries.Herein,we utilize the Lewis acid-base interaction principle for lithium-ion migration regulation.Through loading solid-acids onto molecular sieves to immobilize Lewis base(PF_(6^(-))),we achieve accelerated dissociation of lithium salts and successfully increase the lithium ion transference number to 0.44.Lewis acid-base interaction helps lithium metal batteries achieve more uniform lithium deposition,with an average CE improved to 92.8%.The symmetrical cells can be plated/stripped stably for more than 800 h of cycling.Full cell with high surface-loaded LFP cathode(14 mg/cm^(2))exhibits impressively high capacity retention of 90.7%after 120 cycles at 0.5 C.
基金financially supported by National Natural Science Foundation of China(Nos.52301011,52231008,52142304,52177220,U23A200767,52302236,and 22369005)Hainan Provincial Natural Science Foundation of China(Nos.524QN226 and 524QN222)+2 种基金the Key Research and Development Program of Hainan Province(No.ZDYF2022GXJS006)Starting Research Fund from the Hainan University(No.KYQD(ZR)23026)International Science&Technology Cooperation Program of Hainan Province(No.GHYF2023007).
文摘The alkaline hydrogen evolution reaction(HER)is a crucial process for sustainable hydrogen production,yet it requires efficient and stable electrocatalysts to overcome the high activation energy barrier.The article discusses a novel strategy for enhancing the performance of Ni-Fe layered double hydroxide(Ni-Fe LDH)in the alkaline HER by modifying it with a frustrated Lewis acid-base pair(FLP)constructed through vacancy engineering.The study found that the modified Ni-Fe LDH exhibited improved alkaline HER performance.Density functional theory(DFT)calculations demonstrate that the introduction of FLP can activate water and protons more efficiently than monometallic sites,thus reducing the alkaline HER energy barrier and overpotential.In HER under alkaline conditions,the Volmer step involves an additional hydrolysis dissociation compared to acidic conditions,which is one of the factors contributing to the slow reaction kinetics.This paper demonstrates that FLPs can alter the rate-determining step in alkaline HER from the Volmer step to a step with a lower energy barrier,more suitable for hydrogen desorption.The work provides new insights into the role of FLPs in regulating the mechanism and kinetics of HER and opens a new direction for the design and optimization of LDH-based and other electrocatalysts.
基金supported by the National Natural Science Foundation of China(91545114,91545203,and 21576227)the 985 Program of the Chemistry and Chemical Engineering disciplines of Xiamen University~~
文摘Acetol is a major light oxygenate and readily produced from staged or fast pyrolysis of lignocellulose biomass. Herein we report that acetol can be selectively converted to methyl pyruvate, an important fine chemical, through oxidative esterification over Au-based catalysts. Detailed experimental studies showed that Au on amphoteric supports with appropriate strength and balanced ratio of acid and base sites can facilitate the desired oxidative-esterification pathway without accelerating undesired aldol-condensation or Cannizzaro reactions. In particular, hydroxyapatite (with a Ca/P ratio of 1.62) supported Au achieved 87% selectivity to methyl pyruvate at an acetol conversion of 62%.
基金the support of Key Laboratory of Chinese Medicine Preparation of Solid Dispersion,Gansu Longshenrongfa Pharmaceutical Industry Co.,Ltd.,Gansu Province,China
文摘As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and p H value based on acidbase potentiometric titration reaction.The distribution curves of alendronate sodium were drawn according to the determined p Ka values.There were 4 dissociation constants(pKa_1=2.43,pKa_2=7.55,pKa_3=10.80,pKa_4=11.99,respectively) of alendronate sodium,and 12 existing forms,of which 4 could be ignored,existing in different p H environments.
基金financially supported by the National Natural Science Foundation of China(No.21606100)the Natural Science Foundation of Jiangsu Province(No.BK20180850)+1 种基金the China Postdoctoral Science Foundation(Nos.2019M651740 and 2019T120397)the Young Talent Cultivate Programme of Jiangsu University。
文摘5-Hydroxymethylfurfural(5-HMF),as a key platform compound for the conversion of biomass to various biomass-derived chemicals and biofuels,has been attracted extensive attention.In this research,using Pickering high internal phase emulsions(Pickering HIPEs)as template and functional metal-organic frameworks(MOFs,UiO-66-SO;H and UiO-66-NH;)/Tween 85 as co-stabilizers to synthesis the dual acid-base bifunctional macroporous polymer catalyst by one-pot process,which has excellent catalytic activity in the cascade reaction of converting cellulose to 5-HMF.The effects of the emulsion parameters including the amount of surfactant(ranging from 0.5%to 2.0%(mass)),the internal phase volume fraction(ranging from 75%to 90%)and the acid/base Pickering particles mass ratio(ranging from 0:6 to 6:0)on the morphology and catalytic performance of solid catalyst were systematically researched.The results of catalytic experiments suggested that the connected large pore size of catalyst can effectively improve the cellulose conversion,and the synergistic effect of acid and base active sites can effectively improve the 5-HMF yield.The highest 5-HMF yield,about 40.5%,can be obtained by using polymer/MOFs composite as catalyst(Poly-P12,the pore size of(53.3±11.3)μm,the acid density of 1.99 mmol·g^(-1)and the base density of 1.13 mol·g^(-1))under the optimal reaction conditions(130℃,3 h).Herein,the polymer/MOFs composite with open-cell structure was prepared by the Pickering HIPEs templating method,which provided a favorable experimental basis and theoretical reference for achieving efficient production of high addedvalue product from abundant biomass.
文摘Objective:To improve the diagnosis and therapeutic effect of occurrence and development of hyponatremia and disorder of acid-base balance among patients with hepatic encephalopathy(HE) by elucidating the regularity and mechanism,as well as its influence on prognosis.Methods:327 HE patients admitted to our hospital from January 1990 to June 2010 were enrolled.Meanwhile 316 patients hospitalized in the medical department of the same hospital were chosen as the control group.Patients in both groups were given the same methods to measure arterial blood gas parameters(pH value,PaCO2,[HCO3-],TCO2,BE and SaO2),blood biochemistry([Na+],[K+],[Cl-]),liver function,kidney function and blood glucose,serum sodium,and thereupon tocalculate the anion gap(AG) and the potential [HCO3-],and acid-base balance disorder.Results:Among the 327 HE patients,hyponatremia was found in 188 cases(57.4%),of whom 132 patients died(70.2%).While among the 316 patients in control group,68 presented with hyponatremia(21.5%),and 19 died(27.9%).The incidence and mortality were significantly different between the two groups(P<0.001).All the 327 patients presented with different degrees of acid-base balance disorder and 178 died(54.4%),in whom 164(50.2%) belonged to simple acid-base balance disorder and 74(45.1%) died,136(41.6%) were dual acid-base balance disorder and 80(58.8%) died,27(8.2%) were triple acid-base disturbance and 24(88.9%) died.Whereas in the control group only 83 patients(26.2%) were recognized as simple and dual acid-base balance disorder,and 18(21.7%) died.There was higher incidence of acid-base balance disorder and mortality rate in HE group than control one(P<0.001).Conclusion:Hyponatremia is valuable to judge HE patients' prognosis.The key parameters in the judgment and evaluation on acid-base balance disorder among HE patients are the change of pH values and serum electrolyte values.When pH value ≤ 7.30 or > 7.55,it generally suggests a poor prognosis.