The cache-based covert channel is one of the common vulnerabilities exploited in the Spectre attacks.Current mitigation strategies focus on blocking the eviction-based channel by using a random/encrypted mapping funct...The cache-based covert channel is one of the common vulnerabilities exploited in the Spectre attacks.Current mitigation strategies focus on blocking the eviction-based channel by using a random/encrypted mapping function to translate memory address to the cache address,while the updated-based channel is still vulnerable.In addition,some mitigation strategies are also costly as it needs software and hardware modifications.In this paper,our objective is to devise low-cost,comprehensive-protection techniques for mitigating the Spectre attacks.We proposed a novel cache structure,named EBCache,which focuses on the RISC-V processor and applies the address encryption and blacklist to resist the Spectre attacks.The addresses encryption mechanism increases the difficulty of pruning a minimal eviction set.The blacklist mechanism makes the updated cache lines loaded by the malicious updates invisible.Our experiments demonstrated that the EBCache can prevent malicious modifications.The EBCache,however,reduces the processor’s performance by about 23%but involves only a low-cost modification in the hardware.展开更多
FLUSH+RELOAD attack is recently proposed as a new type of Cache timing attacks.There are three essential factors in this attack,which are monitored instructions.threshold and waiting interval.However,existing literatu...FLUSH+RELOAD attack is recently proposed as a new type of Cache timing attacks.There are three essential factors in this attack,which are monitored instructions.threshold and waiting interval.However,existing literature seldom exploit how and why they could affect the system.This paper aims to study the impacts of these three parameters,and the method of how to choose optimal values.The complete rules for choosing the monitored instructions based on necessary and sufficient condition are proposed.How to select the optimal threshold based on Bayesian binary signal detection principal is also proposed.Meanwhile,the time sequence model of monitoring is constructed and the calculation of the optimal waiting interval is specified.Extensive experiments are conducted on RSA implemented with binary square-and-multiply algorithm.The results show that the average success rate of full RSA key recovery is89.67%.展开更多
Through caching popular contents at the network edge,wireless edge caching can greatly reduce both the content request latency at mobile devices and the traffic burden at the core network.However,popularity-based cach...Through caching popular contents at the network edge,wireless edge caching can greatly reduce both the content request latency at mobile devices and the traffic burden at the core network.However,popularity-based caching strategies are vulnerable to Cache Pollution Attacks(CPAs)due to the weak security protection at both edge nodes and mobile devices.In CPAs,through initiating a large number of requests for unpopular contents,malicious users can pollute the edge caching space and degrade the caching efficiency.This paper firstly integrates the dynamic nature of content request and mobile devices into the edge caching framework,and introduces an eavesdroppingbased CPA strategy.Then,an edge caching mechanism,which contains a Request Pattern Change-based Cache Pollution Detection(RPC2PD)algorithm and an Attack-aware Cache Defense(ACD)algorithm,is proposed to defend against CPAs.Simulation results show that the proposed mechanism could effectively suppress the effects of CPAs on the caching performance and improve the cache hit ratio.展开更多
基金This work was supported in part by the China Ministry of Science and Technology under Grant 2015GA600002。
文摘The cache-based covert channel is one of the common vulnerabilities exploited in the Spectre attacks.Current mitigation strategies focus on blocking the eviction-based channel by using a random/encrypted mapping function to translate memory address to the cache address,while the updated-based channel is still vulnerable.In addition,some mitigation strategies are also costly as it needs software and hardware modifications.In this paper,our objective is to devise low-cost,comprehensive-protection techniques for mitigating the Spectre attacks.We proposed a novel cache structure,named EBCache,which focuses on the RISC-V processor and applies the address encryption and blacklist to resist the Spectre attacks.The addresses encryption mechanism increases the difficulty of pruning a minimal eviction set.The blacklist mechanism makes the updated cache lines loaded by the malicious updates invisible.Our experiments demonstrated that the EBCache can prevent malicious modifications.The EBCache,however,reduces the processor’s performance by about 23%but involves only a low-cost modification in the hardware.
基金supported by National Natural Science Foundation of China (No.61472357,No.61309021,No.61272491, No.61173191)the Major State Basic Research Development Program(973 Plan) of China under the grant 2013CB338004
文摘FLUSH+RELOAD attack is recently proposed as a new type of Cache timing attacks.There are three essential factors in this attack,which are monitored instructions.threshold and waiting interval.However,existing literature seldom exploit how and why they could affect the system.This paper aims to study the impacts of these three parameters,and the method of how to choose optimal values.The complete rules for choosing the monitored instructions based on necessary and sufficient condition are proposed.How to select the optimal threshold based on Bayesian binary signal detection principal is also proposed.Meanwhile,the time sequence model of monitoring is constructed and the calculation of the optimal waiting interval is specified.Extensive experiments are conducted on RSA implemented with binary square-and-multiply algorithm.The results show that the average success rate of full RSA key recovery is89.67%.
文摘Through caching popular contents at the network edge,wireless edge caching can greatly reduce both the content request latency at mobile devices and the traffic burden at the core network.However,popularity-based caching strategies are vulnerable to Cache Pollution Attacks(CPAs)due to the weak security protection at both edge nodes and mobile devices.In CPAs,through initiating a large number of requests for unpopular contents,malicious users can pollute the edge caching space and degrade the caching efficiency.This paper firstly integrates the dynamic nature of content request and mobile devices into the edge caching framework,and introduces an eavesdroppingbased CPA strategy.Then,an edge caching mechanism,which contains a Request Pattern Change-based Cache Pollution Detection(RPC2PD)algorithm and an Attack-aware Cache Defense(ACD)algorithm,is proposed to defend against CPAs.Simulation results show that the proposed mechanism could effectively suppress the effects of CPAs on the caching performance and improve the cache hit ratio.
基金Aeknowledgements: This paper was supported by the National Natural Science Foundation of China (No. 60772082), the Natural Science Foundation of Hebei Province. China (No. 08M010), the Science Research Foundation of Ordnance Engineering The author gratefully acknowledges DENG Gao-ming for discussions which inspired this research, LI Hua for his advice, and the (anonymous) referees for their suggestions.