A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamin...A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamino side groups,TT-Ph-C6 demonstrates excellent solubility and its crystal structure exhibits compact packing structures with a three-dimensional molecular stacking network.These structural attributes markedly promote exciton diffusion and charge carrier mobility,particularly advantageous for the fabrication of thick-film devices.TT-Ph-C6-based devices have attained a PCE of 18.01%at a film thickness of 100 nm,and even at a film thickness of 300 nm,the PCE remains at 14.64%,surpassing that of devices based on 2BTh-2F.These remarkable properties position TT-Ph-C6 as a highly promising NFREA material for boosting the efficiency of OSCs.展开更多
The integration of advanced diagnostic and therapeutic capabilities in oncology has given rise to phototheranostics,a field that combines the precision of imaging with the selectivity of light-activated treatments.Due...The integration of advanced diagnostic and therapeutic capabilities in oncology has given rise to phototheranostics,a field that combines the precision of imaging with the selectivity of light-activated treatments.Due to their pronounced near-infrared(NIR)absorption,tunable molecular structures,and commendable stability,organic photovoltaic non-fullerene acceptors(NFAs)represent a promising frontier in cancer management.Despite the great potential of NFAs in phototheranostics,there is currently a lack of systematic reviews in this field.This review provides a meticulous examination of the current state of NFAs in the field of phototheranostics,highlighting the strategic approaches to spectral red-shifting that enhance tissue penetration and therapeutic efficacy.It dissects the link between molecular architecture and performance across key therapeutic and diagnostic modalities,including photothermal therapy(PTT),photodynamic therapy(PDT),and fluorescence imaging(FLI).In addition,the review presents a concise analysis of the challenges and milestones in the clinical translation of NFAs,offering insights into the innovations required to overcome existing barriers.展开更多
The asymmetric molecular design strategy,with advantages in modulating the molecular dipole moment and intermolecular interactions and achieving more favorable molecular packing and orientation,has been an effective a...The asymmetric molecular design strategy,with advantages in modulating the molecular dipole moment and intermolecular interactions and achieving more favorable molecular packing and orientation,has been an effective approach for designing high-performance nonfullerene acceptors(NFAs).Herein,two asymmetric NFAs,Y-CN-2F and Y-CN-2Cl,were designed and synthesized by introducing a linear alkyl chain terminated with the 4-cyanobiphenyl group,a well-known mesogenic unit,at one of the inner pyrrole positions instead of the normal 2-butyloctyl branched alkyl chain.The difference between Y-CN-2F and Y-CN-2Cl is the terminated IC-groups,which was modified with F and Cl halogens,respectively.Both NFAs displayed strong absorption in the near-infrared to visible-light range,which is complementary to that of typical medium-bandgap donor polymers.After optimization with D18 donor in organic solar cells(OSCs),Y-CN-2F and Y-CN-2Cl provided comparable power conversion efficiencies(PCEs)of 15.33%and 15.88%.While the D18:Y-CN-2F based devices displayed higher fill factors(FFs),those based on D18:Y-CN-2Cl exhibited higher current densities and open-circuit voltages.The Y-CN-2Cl film showed longer light absorption than YCN-2F,which is beneficial for more light harvesting.Moreover,D18:Y-CN-2Cl displayed a lower fluorescence lifetime and faster carrier transfer processes,which could be attributed to its higher mobility.For the D18:Y-CN-2F blended film,a more pronounced fiber network structure and balanced carrier mobility were observed,which contributed to the higher FFs values.This work presents new efforts to develop more asymmetric NFAs with specific functional segments for efficient organic electronics.展开更多
The development of narrow-bandgap polymer donors with complementary absorption and matched energy levels for perylene diimides(PDI)-based nonfullerene acceptors(NFAs)has received little attention.The high-lying highes...The development of narrow-bandgap polymer donors with complementary absorption and matched energy levels for perylene diimides(PDI)-based nonfullerene acceptors(NFAs)has received little attention.The high-lying highest occupied molecular orbital(HOMO)level and low degree of crystallinity of the star donor polymer PCE10 limit its application in PDI-based Organic solar cells(OSCs).In this study,two benzo[1,2-b:4,5-b′]difuran(BDF)-based narrow-bandgap polymer donors,PBDF and PBDFCl,were synthesized to improve the photovoltaic performance of PDI-based OSCs.The smaller BDF moiety with higher electronegativity endows the resulting polymers with stronger aggregation and lower HOMO energy levels.The power conversion efficiency(PCE)value of the PBDF:Ph(PDI)3-based OSCs was 7.24%,which is much higher than that of PCE10-based OSCs(6.09%).Further chlorination of the conjugated side chain elevated the PCE to 8.84%,which is 1.4 times higher than that of PCE10-based OSCs.These results demonstrate the significant contribution of designing novel narrow-bandgap polymer donors to boost the PCE of PDI-based OSCs and highlight the importance of matching the aggregation behaviors of polymeric donor materials with that of NFAs.展开更多
Polymer acceptor configuration and aggregation behavior are critical in determining the photovoltaic performance of all-polymer solar cells(all-PSCs).Effectively manipulating polymer self-aggregation through structura...Polymer acceptor configuration and aggregation behavior are critical in determining the photovoltaic performance of all-polymer solar cells(all-PSCs).Effectively manipulating polymer self-aggregation through structural design to optimize the blend morphology remains challenging.Herein,we present a simple yet effective design strategy to modulate the aggregation behavior of the Y-series-based polymer acceptor PY-V-γby introducing a pendant-fluorinated Y-series acceptor(Y2F-ET)into the main-conjugated backbone.Two random copolymer acceptors(PY-EY-5 and PY-EY-20)were synthesized with varying molar fractions of Y2F-ET pendant monomers.Our findings revealed that both the solution-phase and solid-state aggregation behaviors were progressively suppressed as the Y2F-ET content increased.Compared to the highly self-aggregating PY-V-γ-based all-PSCs,the more amorphous PY-EY-5 enabled devices to achieve an increased device efficiency from 17.31%to 18.45%,which is attributed to the slightly smaller polymer phase-separation domain sizes and reduced molecular aggregation in the PM6:PY-EY-5 blend.Moreover,the finely tuned blend morphology exhibited superior thermal stability,underscoring the significant advantages of the Y-series pendant random copolymerization approach.展开更多
The active layer of all polymer solar cells(all-PSCs)is composed of a blend of a p-type conjugated polymer(p-CP)as donor and an n-type conjugated polymer(n-CP)as acceptor.All-PSCs possess the advantages of light weigh...The active layer of all polymer solar cells(all-PSCs)is composed of a blend of a p-type conjugated polymer(p-CP)as donor and an n-type conjugated polymer(n-CP)as acceptor.All-PSCs possess the advantages of light weight,thin active layer,mechanical flexibility,low cost solution processing and high stability,but the power conversion efficiency(PCE)of the all-PSCs was limited by the poor photovoltaic performance of the n-CP acceptors before 2016.Since the report of the strategy of polymerized small molecule acceptors(PSMAs)in 2017,the photovoltaic performance of the PSMA-based n-CPs improved rapidly,benefitted from the development of the A-DA’D-A type small molecule acceptors(SMAs).PCE of the all-PSCs based on the PSMA acceptors reached 17%-18%recently.In this review article,we will introduce the development history of the n-CPs,especially the recent research progress of the PSMAs.Particularly,the structure-property relationship of the PSMAs is introduced and discussed.Finally,current challenges and prospects of the n-CP acceptors are analyzed and discussed.展开更多
To achieve the red-shifted absorptions and appropriate energy levels of A-D-A type non-fullerene acceptors(NFAs), in this work, we design and synthesize two new NFAs, named TPDCIC and TPDCNC, whose electron-donating(D...To achieve the red-shifted absorptions and appropriate energy levels of A-D-A type non-fullerene acceptors(NFAs), in this work, we design and synthesize two new NFAs, named TPDCIC and TPDCNC, whose electron-donating(D) unit is constructed by a thieno[3,4-c]pyrrole-4,6-dione(TPD) core attached to two cyclopentadithiophene(CPDT) moieties at both sides, and the electronaccepting(A) end-groups are 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile(IC) and 2-(3-oxo-2,3-dihydro-1 H-cyclopenta[b]naphthalen-1-ylidene)malononitrile(NC), respectively. Benefiting from TPD core, which easily forms quinoid structure and O···H or O···S intramolecular noncovalent interactions, TPDCIC and TPDCNC show more delocalization of π-electrons and perfect planar molecular geometries, giving the absorption ranges extended to 822 and 852 nm, respectively. Furthermore, the highest occupied molecular orbital(HOMO) levels of TPDCIC and TPDCNC remain relatively low-lying due to the electronegativity of the carbonyl groups on TPD core. Considering that the absorptions and energy levels of the two NFAs match well with those of a widely used polymer donor, PBDB-T, we fabricate two kinds of organic solar cells(OSCs) based on the PBDB-T:TPDCIC and PBDB-T:TPDCNC blended films, respectively. Through a series of optimizations, the TPDCIC-based devices yield an impressing power conversion efficiency(PCE)of 10.12% with a large short-circuit current density(JSC) of 18.16 mA·cm-2, and the TPDCNC-based ones exhibit a comparable PCE of9.80% with a JSC of 17.40 mA·cm-2. Our work is the first report of the TPD-core-based A-D-A type NFAs, providing a good reference for the molecular design of high-performance NFAs.展开更多
All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)in...All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs.展开更多
Two simple electron acceptors based on unfused bithiophene core and 1,1-dicyanomethylene-3-indanone end group were easily prepared via three synthetic steps. These acceptors exhibited broad absorption in the range of ...Two simple electron acceptors based on unfused bithiophene core and 1,1-dicyanomethylene-3-indanone end group were easily prepared via three synthetic steps. These acceptors exhibited broad absorption in the range of 300 nm to 800 nm, aligned energy levels and high crystallinity. When combined with a wide band gap donor polymer in non-fullerene solar cells, an initial power conversion efficiency of 2.4% was achieved. The relatively low efficiencies were due to the large phase separation in blended thin films, which is originated from their high aggregation tendency in thin films. Our results suggest that these electron acceptors with unfused core are promising candidates for commercial application of solar cells due to the low cost starting materials and facile synthesis.展开更多
Nonfused ring electron acceptors(NFREAs)have attracted much attention due to their concise synthetic routes and low cost.However,developing high-performance NFREAs with simple structure remains a great challenge.In th...Nonfused ring electron acceptors(NFREAs)have attracted much attention due to their concise synthetic routes and low cost.However,developing high-performance NFREAs with simple structure remains a great challenge.In this work,a simple building block(POBT)with noncovalently conformational locks(No CLs)was designed and synthesized.Single-crystal X-ray study indicated the presence of S…O NOCLs in POBT,thus enabling it to possess a coplanar conformation comparable to that of fused-ring CPT.Two novel NFREAs based on CPT and POBT were developed,namely TT-CPT and TT-POBT,respectively.Besides,TT-POBT possessed a smaller Stokes shift and a reduced reorganization energy compared with TT-CPT,indicating the introduction of S…O No CLs can enhance the molecular rigidity even if simplifying the molecular structure.As a result,the TT-POBT-based PSC device afforded an impressive power conversion efficiency of 11.15%,much higher than that of TT-CPT counterpart(7.03%),mainly resulting from the tighterπ-πstacking,improved and balanced charge transport,and more favorable film morphology.This work demonstrates the potential of the simple building block POBT with No CLs towards constructing low-cost and highperformance NFREAs.展开更多
The emergence of Y6-type nonfullerene acceptors has greatly enhanced the power conversion efficiency(PCE)of organic solar cells(OSCs).However,which structural feature is responsible for the excellent photovoltaic perf...The emergence of Y6-type nonfullerene acceptors has greatly enhanced the power conversion efficiency(PCE)of organic solar cells(OSCs).However,which structural feature is responsible for the excellent photovoltaic performance is still under debate.In this study,two Y6-like acceptors BDOTP-1 and BDOTP-2 were designed.Different from previous Y6-type acceptors featuring an A–D–Aʹ–D–A structure,BDOTP-1,and BDOTP-2 have no electron-deficient Aʹfragment in the core unit.Instead,there is an electron-rich dibenzodioxine fragment in the core.Although this modification leads to a marked change in the molecular dipole moment,electrostatic potential,frontier orbitals,and energy levels,BDOTP acceptors retain similar three-dimensional packing capability as Y6-type acceptors due to the similar banana-shaped molecular configuration.BDOTP acceptors show good performance in OSCs.High PCEs of up to 18.51%(certified 17.9%)are achieved.This study suggests that the banana-shaped configuration instead of the A–D–Aʹ–D–A structure is likely to be the determining factor in realizing high photovoltaic performance.展开更多
The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethyli...The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethylidene)indan-1-one(IC)end group or its derivatives,leading to low molecular weight,and thus reduce active layer mechanical properties.Herein,a series of newly designed chlorinated PSMAs originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight,favorable intermolecular interaction,and improved physicochemical properties.Compared with regioregular PY2Se-Cl-o and PY2Se-Cl-m,regiorandom PY2Se-Cl-ran has a similar absorption profile,moderate lowest unoccupied molecular orbital level,and favorable intermolecular packing and crystallization properties.Moreover,the binary PM6:PY2Se-Cl-ran blend achieves better ductility with a crack-onset strain of 17.5% and improved power conversion efficiency(PCE)of 16.23% in all-polymer solar cells(all-PSCs)due to the higher molecular weight of PY2Se-Cl-ran and optimized blend morphology,while the ternary PM6:J71:PY2Se-Cl-ran blend offers an impressive PCE approaching 17% and excellent device stability,which are all crucial for potential practical applications of all-PSCs in wearable electronics.To date,the efficiency of 16.86% is the highest value reported for the regiorandom PSMAs-based all-PSCs and is also one of the best values reported for the all-PSCs.Our work provides a new perspective to develop efficient all-PSCs,with all high active layer ductility,impressive PCE,and excellent device stability,towards practical applications.展开更多
Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE dr...Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed vip acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored vip acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.展开更多
Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and sm...Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and small molecule acceptors(SMAs)have achieved remarkable success with the power conversion efficiencies(PCEs)over 18%[21−26].展开更多
We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diet...We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diethynylbenzene(para-linkage)and 1,3-diethynylbenzene(meta-linkage),isomeric PDI based conjugated polymers with parallel and non-parallel PDI units inside backbones were obtained.It was found that para-linked conjugated polymer(PA)showed better solubility,strongerπ-πstacking,more favorable blend morphology,and better photovoltaic performance than those of meta-linked conjugated polymers(PM)did.Device based on PTB7-Th:PA(PTB7-Th:poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl})showed significantly enhanced photovoltaic performance than that of PTB7-Th:MA(3.29%versus 0.92%).Moreover,the photovoltaic performance of these polymeric acceptors could be further improved via a terpolymeric strategy.By copolymerizing a small amount of meta-linkages into PA,the optimized terpolymeric acceptors enabled to enhance photovoltaic performance with improved the short-circuit current density(Jsc)and fill factor(FF),resulting in an improved power conversion efficiency(PCE)of 4.03%.展开更多
Nonfullerene acceptors(NFAs),which usually possess symmetric skeletons,have drawn great attention in recent years due to their pronounced advantages over the fullerene counterparts.Moreover,breaking the symmetry of NF...Nonfullerene acceptors(NFAs),which usually possess symmetric skeletons,have drawn great attention in recent years due to their pronounced advantages over the fullerene counterparts.Moreover,breaking the symmetry of NFAs could fine tune the molecular dipole,solubility,energy level,intermolecular interaction,molecular packing,crystallinity,etc.,and give rise to improved photovoltaic performance.Currently,there are three main strategies for the design of asymmetric NFAs.This review highlights the recent advances of high-performance asymmetric NFAs and briefly outlooks the materials exploration for the future.展开更多
A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109...A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109(8), b = 16.596(8), c = 7.983(3)A, β = 91.590(15)°, V = 3193(2)A^3, Z = 4, C33H18I2N6O3Pb, Mr = 1007.53, Dc = 2.096 g/cm^3, F(000) = 1880, μ(MoKα) = 7.262 mm^-1, the final R = 0.0352 and wR = 0.0951 for 3198 observed reflections with I 〉 2σ(I). In the [(dafone)PbI2]n chain, the Pb center adopts a distorted octahedral coordination geometry and shares an edge to give a one-dimensional polymer. The 3-D arrangement of 1 constructs from H-bonds among dafone molecules and π-π stacking interactions among dissociative dafone molecules. These weak interactions contribute to the stability of the title compound. DFT calculation was carried out to reveal its electronic structure.展开更多
Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy...Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy to improve the performance of polymer solar cells.The asymmetric design of the molecule is very beneficial for exciton dissociation and charge transport and will also fine-tune the molecular energy level to adjust the open-circuit voltage(Voc)further.The influence on the absorption range and absorption intensity will cause the short-circuit current density(Jsc)to change,resulting in higher device performance.The effect on molecular aggregation and molecular stacking of asymmetric structures can directly change the microscopic morphology,phase separation size,and the active layer's crystallinity.Very recently,thanks to the ingenious design of active layer materials and the optimization of devices,asymmetric non-fullerene polymer solar cells(A-NF-PSCs)have achieved remarkable development.In this review,we have summarized the latest developments in asymmetric small molecule acceptors(A-NF-SMAs)with the acceptor-donor-acceptor(A-D-A)and/or acceptor-donor-acceptor-donor-acceptor(A-D-A-D-A)structures,and the advantages of asymmetric small molecules are explored from the aspects of charge transport,molecular energy level and active layer accumulation morphology.展开更多
Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the i...Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the intrinsic shortcomings, such as weak absorption in the visible range, difficulty in modification and high cost, which limit the performance of the device and the large-scale application of this type of acceptors. In recent years, non-fullerene electron acceptor material has attracted the attention of scientists due to the advantages of adjustable energy level, wide absorption, simple synthesis, low processing cost and good solubility. Researchers can use the rich chemical means to design and synthesize organic small molecules and their oligomers with specific aggregation morphology and excellent optoelectronic prop- erties. Great advances in the field of synthesis, device engineering, and device physics of non-fullerene acceptors have been achieved in the last few years. At present, non-fullerene small molecules based photovoltaic devices achieve the highest efficiency more than 13% and the efficiency gap between fullerenetype and non-fullerene-type photovoltaic devices is gradually narrowing. In this review, we explore recent progress of non-fullerene small molecule electron acceptors that have been developed and led to highefficiency photovoltaic devices and put forward the prospect of development in the future.展开更多
Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular elec...Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular electron acceptors with 2-dimensional(2 D) configuration and conjugation are seldom reported.Herein, we designed and synthesized a series of novel 2 D electron acceptors for efficient NF-PSCs. With rational optimization on the conjugated moieties in both vertical and horizontal direction, these 2 D electron acceptors showed appealing properties, such as good planarity, full-spectrum absorption, high absorption extinction coefficient, and proper blend morphology with donor polymer. A high PCE of 9.76%was achieved for photovoltaic devices with PBDB-T as the donor and these 2 D electron acceptors. It was also found the charge transfer between the conjugated moieties in two directions of these 2 D molecules contributes to the utilization of absorbed photos, resulting in an exceptional EQE of 87% at 730 nm. This work presents rational design guidelines of 2 D electron acceptors, which showed great promise to achieve high-performance non-fullerene polymer solar cells.展开更多
基金Financial support from the National Natural Science Foundation of China(22375024,21975031,21734009,51933001,22109080,and 52173174)the Natural Science Foundation of Shandong Province(No.ZR2022YQ45)+2 种基金the Taishan Scholars Program(Nos.tstp20221121 and tsqnz20221134)The Beijing Natural Science Foundation(No.2244073)supported by State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University)(RZ2200002821)is acknowledged.
文摘A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamino side groups,TT-Ph-C6 demonstrates excellent solubility and its crystal structure exhibits compact packing structures with a three-dimensional molecular stacking network.These structural attributes markedly promote exciton diffusion and charge carrier mobility,particularly advantageous for the fabrication of thick-film devices.TT-Ph-C6-based devices have attained a PCE of 18.01%at a film thickness of 100 nm,and even at a film thickness of 300 nm,the PCE remains at 14.64%,surpassing that of devices based on 2BTh-2F.These remarkable properties position TT-Ph-C6 as a highly promising NFREA material for boosting the efficiency of OSCs.
基金supported by the Natural Science Foundation of Zhejiang Province(Nos.LZ23B040001,LY23E030003 and LY24B030005)the National Natural Science Foundation of China(No.22105222)+1 种基金the Interdisciplinary Research Project of Hangzhou Normal University(No.2024JCXK05)the Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,Soochow University。
文摘The integration of advanced diagnostic and therapeutic capabilities in oncology has given rise to phototheranostics,a field that combines the precision of imaging with the selectivity of light-activated treatments.Due to their pronounced near-infrared(NIR)absorption,tunable molecular structures,and commendable stability,organic photovoltaic non-fullerene acceptors(NFAs)represent a promising frontier in cancer management.Despite the great potential of NFAs in phototheranostics,there is currently a lack of systematic reviews in this field.This review provides a meticulous examination of the current state of NFAs in the field of phototheranostics,highlighting the strategic approaches to spectral red-shifting that enhance tissue penetration and therapeutic efficacy.It dissects the link between molecular architecture and performance across key therapeutic and diagnostic modalities,including photothermal therapy(PTT),photodynamic therapy(PDT),and fluorescence imaging(FLI).In addition,the review presents a concise analysis of the challenges and milestones in the clinical translation of NFAs,offering insights into the innovations required to overcome existing barriers.
基金financially supported by the National Natural Science Foundation of China(Nos.22465018,52163018 and 22405107)of ChinaJiangxi Provincial Department of Science and Technology(Nos.20232BBE50026,jxsq2023102153,20232BAB21302 and 2024SSY05132)Jiangxi Academy of Sciences(Nos.2023YYB07,2022YSBG22031,2022YJC2019,2022YJC2017,2023YSBG21017,2022YYB10,2022YRCS002,2023YJC1001,and 2023YSBG22025)。
文摘The asymmetric molecular design strategy,with advantages in modulating the molecular dipole moment and intermolecular interactions and achieving more favorable molecular packing and orientation,has been an effective approach for designing high-performance nonfullerene acceptors(NFAs).Herein,two asymmetric NFAs,Y-CN-2F and Y-CN-2Cl,were designed and synthesized by introducing a linear alkyl chain terminated with the 4-cyanobiphenyl group,a well-known mesogenic unit,at one of the inner pyrrole positions instead of the normal 2-butyloctyl branched alkyl chain.The difference between Y-CN-2F and Y-CN-2Cl is the terminated IC-groups,which was modified with F and Cl halogens,respectively.Both NFAs displayed strong absorption in the near-infrared to visible-light range,which is complementary to that of typical medium-bandgap donor polymers.After optimization with D18 donor in organic solar cells(OSCs),Y-CN-2F and Y-CN-2Cl provided comparable power conversion efficiencies(PCEs)of 15.33%and 15.88%.While the D18:Y-CN-2F based devices displayed higher fill factors(FFs),those based on D18:Y-CN-2Cl exhibited higher current densities and open-circuit voltages.The Y-CN-2Cl film showed longer light absorption than YCN-2F,which is beneficial for more light harvesting.Moreover,D18:Y-CN-2Cl displayed a lower fluorescence lifetime and faster carrier transfer processes,which could be attributed to its higher mobility.For the D18:Y-CN-2F blended film,a more pronounced fiber network structure and balanced carrier mobility were observed,which contributed to the higher FFs values.This work presents new efforts to develop more asymmetric NFAs with specific functional segments for efficient organic electronics.
基金supported by the National Natural Science Foundation of China(Nos.52273195 and 51973169)Young Top-notch Talent Cultivation Program of Hubei Province,Natural Science Foundation of Hubei Province(No.2022CFB097)。
文摘The development of narrow-bandgap polymer donors with complementary absorption and matched energy levels for perylene diimides(PDI)-based nonfullerene acceptors(NFAs)has received little attention.The high-lying highest occupied molecular orbital(HOMO)level and low degree of crystallinity of the star donor polymer PCE10 limit its application in PDI-based Organic solar cells(OSCs).In this study,two benzo[1,2-b:4,5-b′]difuran(BDF)-based narrow-bandgap polymer donors,PBDF and PBDFCl,were synthesized to improve the photovoltaic performance of PDI-based OSCs.The smaller BDF moiety with higher electronegativity endows the resulting polymers with stronger aggregation and lower HOMO energy levels.The power conversion efficiency(PCE)value of the PBDF:Ph(PDI)3-based OSCs was 7.24%,which is much higher than that of PCE10-based OSCs(6.09%).Further chlorination of the conjugated side chain elevated the PCE to 8.84%,which is 1.4 times higher than that of PCE10-based OSCs.These results demonstrate the significant contribution of designing novel narrow-bandgap polymer donors to boost the PCE of PDI-based OSCs and highlight the importance of matching the aggregation behaviors of polymeric donor materials with that of NFAs.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.22279094 and 22409149)Hubei Provincial Natural Science Foundation(No.2024 AFB068)Fundamental Research Funds for the Central Universities。
文摘Polymer acceptor configuration and aggregation behavior are critical in determining the photovoltaic performance of all-polymer solar cells(all-PSCs).Effectively manipulating polymer self-aggregation through structural design to optimize the blend morphology remains challenging.Herein,we present a simple yet effective design strategy to modulate the aggregation behavior of the Y-series-based polymer acceptor PY-V-γby introducing a pendant-fluorinated Y-series acceptor(Y2F-ET)into the main-conjugated backbone.Two random copolymer acceptors(PY-EY-5 and PY-EY-20)were synthesized with varying molar fractions of Y2F-ET pendant monomers.Our findings revealed that both the solution-phase and solid-state aggregation behaviors were progressively suppressed as the Y2F-ET content increased.Compared to the highly self-aggregating PY-V-γ-based all-PSCs,the more amorphous PY-EY-5 enabled devices to achieve an increased device efficiency from 17.31%to 18.45%,which is attributed to the slightly smaller polymer phase-separation domain sizes and reduced molecular aggregation in the PM6:PY-EY-5 blend.Moreover,the finely tuned blend morphology exhibited superior thermal stability,underscoring the significant advantages of the Y-series pendant random copolymerization approach.
基金financially supported by the National Natural Science Foundation of China(Nos.61904181,51820105003,52173188 and 21734008)the Basic and Applied Basic Research Major Program of Guangdong Province(No.2019B030302007)。
文摘The active layer of all polymer solar cells(all-PSCs)is composed of a blend of a p-type conjugated polymer(p-CP)as donor and an n-type conjugated polymer(n-CP)as acceptor.All-PSCs possess the advantages of light weight,thin active layer,mechanical flexibility,low cost solution processing and high stability,but the power conversion efficiency(PCE)of the all-PSCs was limited by the poor photovoltaic performance of the n-CP acceptors before 2016.Since the report of the strategy of polymerized small molecule acceptors(PSMAs)in 2017,the photovoltaic performance of the PSMA-based n-CPs improved rapidly,benefitted from the development of the A-DA’D-A type small molecule acceptors(SMAs).PCE of the all-PSCs based on the PSMA acceptors reached 17%-18%recently.In this review article,we will introduce the development history of the n-CPs,especially the recent research progress of the PSMAs.Particularly,the structure-property relationship of the PSMAs is introduced and discussed.Finally,current challenges and prospects of the n-CP acceptors are analyzed and discussed.
基金financially supported by the National Natural Science Foundation of China (Nos. 21875216, 21734008)Zhejiang Province Science and Technology Plan (No. 2018C01047)the financial support from Research Grant Council of Hong Kong (General Research Fund No. 14314216, CUHK Direct Grant No. 4053227)
文摘To achieve the red-shifted absorptions and appropriate energy levels of A-D-A type non-fullerene acceptors(NFAs), in this work, we design and synthesize two new NFAs, named TPDCIC and TPDCNC, whose electron-donating(D) unit is constructed by a thieno[3,4-c]pyrrole-4,6-dione(TPD) core attached to two cyclopentadithiophene(CPDT) moieties at both sides, and the electronaccepting(A) end-groups are 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile(IC) and 2-(3-oxo-2,3-dihydro-1 H-cyclopenta[b]naphthalen-1-ylidene)malononitrile(NC), respectively. Benefiting from TPD core, which easily forms quinoid structure and O···H or O···S intramolecular noncovalent interactions, TPDCIC and TPDCNC show more delocalization of π-electrons and perfect planar molecular geometries, giving the absorption ranges extended to 822 and 852 nm, respectively. Furthermore, the highest occupied molecular orbital(HOMO) levels of TPDCIC and TPDCNC remain relatively low-lying due to the electronegativity of the carbonyl groups on TPD core. Considering that the absorptions and energy levels of the two NFAs match well with those of a widely used polymer donor, PBDB-T, we fabricate two kinds of organic solar cells(OSCs) based on the PBDB-T:TPDCIC and PBDB-T:TPDCNC blended films, respectively. Through a series of optimizations, the TPDCIC-based devices yield an impressing power conversion efficiency(PCE)of 10.12% with a large short-circuit current density(JSC) of 18.16 mA·cm-2, and the TPDCNC-based ones exhibit a comparable PCE of9.80% with a JSC of 17.40 mA·cm-2. Our work is the first report of the TPD-core-based A-D-A type NFAs, providing a good reference for the molecular design of high-performance NFAs.
基金the Swedish Research Council (2016-06146,2019-02345)Swedish Research Council (grant no.2020-05223)+7 种基金the Swedish Research Council Formas,the Swedish Energy Agency (52473-1)the Wallenberg Foundation (2017.0186 and 2016.0059) for financial supportsupported by the National Research Foundation of Korea (NRF-2017M3A7B8065584 and 2020R1A4A1018516)Support from the National Natural Science Foundation of China (61774077)the Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province (2019B1515120073)the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (No.2020B1212030010)Support from Sino-Danish Center for Education and ResearchSwedish Energy Agency (grant no.45420-1)
文摘All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs.
基金supported by MOST (No. 2017YFA0204702)National Natural Science Foundation of China (Nos. 51773207, 21574138, 51603209, 91633301)supported by the Strategic Priority Research Program (No. XDB12030200) of the Chinese Academy of Sciences and the Recruitment Program of Global Youth Experts of China
文摘Two simple electron acceptors based on unfused bithiophene core and 1,1-dicyanomethylene-3-indanone end group were easily prepared via three synthetic steps. These acceptors exhibited broad absorption in the range of 300 nm to 800 nm, aligned energy levels and high crystallinity. When combined with a wide band gap donor polymer in non-fullerene solar cells, an initial power conversion efficiency of 2.4% was achieved. The relatively low efficiencies were due to the large phase separation in blended thin films, which is originated from their high aggregation tendency in thin films. Our results suggest that these electron acceptors with unfused core are promising candidates for commercial application of solar cells due to the low cost starting materials and facile synthesis.
基金the National Natural Science Foundation of China(Nos.52103352,51925306 and 52120105006)National Key R&D Program of China(No.2018FYA 0305800)+3 种基金Key Research Program of Chinese Academy of Sciences(No.XDPB08-2)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB28000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2022165)the Fundamental Research Funds for the Central Universities.
文摘Nonfused ring electron acceptors(NFREAs)have attracted much attention due to their concise synthetic routes and low cost.However,developing high-performance NFREAs with simple structure remains a great challenge.In this work,a simple building block(POBT)with noncovalently conformational locks(No CLs)was designed and synthesized.Single-crystal X-ray study indicated the presence of S…O NOCLs in POBT,thus enabling it to possess a coplanar conformation comparable to that of fused-ring CPT.Two novel NFREAs based on CPT and POBT were developed,namely TT-CPT and TT-POBT,respectively.Besides,TT-POBT possessed a smaller Stokes shift and a reduced reorganization energy compared with TT-CPT,indicating the introduction of S…O No CLs can enhance the molecular rigidity even if simplifying the molecular structure.As a result,the TT-POBT-based PSC device afforded an impressive power conversion efficiency of 11.15%,much higher than that of TT-CPT counterpart(7.03%),mainly resulting from the tighterπ-πstacking,improved and balanced charge transport,and more favorable film morphology.This work demonstrates the potential of the simple building block POBT with No CLs towards constructing low-cost and highperformance NFREAs.
基金the open research fund of the Songshan Lake Materials Laboratory(2021SLABFK02)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51922032 and 21961160720).
文摘The emergence of Y6-type nonfullerene acceptors has greatly enhanced the power conversion efficiency(PCE)of organic solar cells(OSCs).However,which structural feature is responsible for the excellent photovoltaic performance is still under debate.In this study,two Y6-like acceptors BDOTP-1 and BDOTP-2 were designed.Different from previous Y6-type acceptors featuring an A–D–Aʹ–D–A structure,BDOTP-1,and BDOTP-2 have no electron-deficient Aʹfragment in the core unit.Instead,there is an electron-rich dibenzodioxine fragment in the core.Although this modification leads to a marked change in the molecular dipole moment,electrostatic potential,frontier orbitals,and energy levels,BDOTP acceptors retain similar three-dimensional packing capability as Y6-type acceptors due to the similar banana-shaped molecular configuration.BDOTP acceptors show good performance in OSCs.High PCEs of up to 18.51%(certified 17.9%)are achieved.This study suggests that the banana-shaped configuration instead of the A–D–Aʹ–D–A structure is likely to be the determining factor in realizing high photovoltaic performance.
基金National Natural Science Foundation of China,Grant/Award Numbers:21704082,21875182,22005121Key Scientific and Technological Innovation Team Project of Shaanxi Province,Grant/Award Number:2020TD‐002111 project 2.0,Grant/Award Number:BP2018008。
文摘The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethylidene)indan-1-one(IC)end group or its derivatives,leading to low molecular weight,and thus reduce active layer mechanical properties.Herein,a series of newly designed chlorinated PSMAs originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight,favorable intermolecular interaction,and improved physicochemical properties.Compared with regioregular PY2Se-Cl-o and PY2Se-Cl-m,regiorandom PY2Se-Cl-ran has a similar absorption profile,moderate lowest unoccupied molecular orbital level,and favorable intermolecular packing and crystallization properties.Moreover,the binary PM6:PY2Se-Cl-ran blend achieves better ductility with a crack-onset strain of 17.5% and improved power conversion efficiency(PCE)of 16.23% in all-polymer solar cells(all-PSCs)due to the higher molecular weight of PY2Se-Cl-ran and optimized blend morphology,while the ternary PM6:J71:PY2Se-Cl-ran blend offers an impressive PCE approaching 17% and excellent device stability,which are all crucial for potential practical applications of all-PSCs in wearable electronics.To date,the efficiency of 16.86% is the highest value reported for the regiorandom PSMAs-based all-PSCs and is also one of the best values reported for the all-PSCs.Our work provides a new perspective to develop efficient all-PSCs,with all high active layer ductility,impressive PCE,and excellent device stability,towards practical applications.
基金the support from the NSFC (22209131, 22005121, 21875182, and 52173023)National Key Research and Development Program of China (2022YFE0132400)+4 种基金Key Scientific and Technological Innovation Team Project of Shaanxi Province (2020TD-002)111 project 2.0 (BP0618008)Open Fund of Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications (Changzhou University, GDRGCS2022002)Open Fund of Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education (Jiangxi Normal University, KFSEMC-202201)acquired at beamlines 7.3.3 and 11.0.1.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231
文摘Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed vip acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored vip acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.
基金the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province(2021B1515020027)the National Natural Science Foundation of China(21801124 and 21774055)+2 种基金Shenzhen Science and Technology Innovation Commission(JCYJ20180504165709042)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support.
文摘Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and small molecule acceptors(SMAs)have achieved remarkable success with the power conversion efficiencies(PCEs)over 18%[21−26].
基金financially supported by the Ministry of Science and Technology of China (No. 2014CB643501)the National Natural Science Foundation of China (Nos. 21634004 and 51403070)+1 种基金the Foundation of Guangzhou Science and Technology Project (No. 201707020019)Zhi-Cheng Hu thanks the financial support from China Postdoctoral Science Foundation (No. 2017M622684)
文摘We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diethynylbenzene(para-linkage)and 1,3-diethynylbenzene(meta-linkage),isomeric PDI based conjugated polymers with parallel and non-parallel PDI units inside backbones were obtained.It was found that para-linked conjugated polymer(PA)showed better solubility,strongerπ-πstacking,more favorable blend morphology,and better photovoltaic performance than those of meta-linked conjugated polymers(PM)did.Device based on PTB7-Th:PA(PTB7-Th:poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl})showed significantly enhanced photovoltaic performance than that of PTB7-Th:MA(3.29%versus 0.92%).Moreover,the photovoltaic performance of these polymeric acceptors could be further improved via a terpolymeric strategy.By copolymerizing a small amount of meta-linkages into PA,the optimized terpolymeric acceptors enabled to enhance photovoltaic performance with improved the short-circuit current density(Jsc)and fill factor(FF),resulting in an improved power conversion efficiency(PCE)of 4.03%.
基金supported by the National Natural Science Foundation of China(Nos.22075069,51933001)Natural Science Foundation of Henan Province(No.212300410002)Program sponsored by Henan Province(Nos.23ZX002,ZYQR201912163).
文摘Nonfullerene acceptors(NFAs),which usually possess symmetric skeletons,have drawn great attention in recent years due to their pronounced advantages over the fullerene counterparts.Moreover,breaking the symmetry of NFAs could fine tune the molecular dipole,solubility,energy level,intermolecular interaction,molecular packing,crystallinity,etc.,and give rise to improved photovoltaic performance.Currently,there are three main strategies for the design of asymmetric NFAs.This review highlights the recent advances of high-performance asymmetric NFAs and briefly outlooks the materials exploration for the future.
基金Supported by the Natural Science Foundation of Fujian Province (E0710008)Innovation Fund for Young Scientist of Fujian Province (2007F3049)Fund of Education Committee of Fujian Province (JA07018)
文摘A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109(8), b = 16.596(8), c = 7.983(3)A, β = 91.590(15)°, V = 3193(2)A^3, Z = 4, C33H18I2N6O3Pb, Mr = 1007.53, Dc = 2.096 g/cm^3, F(000) = 1880, μ(MoKα) = 7.262 mm^-1, the final R = 0.0352 and wR = 0.0951 for 3198 observed reflections with I 〉 2σ(I). In the [(dafone)PbI2]n chain, the Pb center adopts a distorted octahedral coordination geometry and shares an edge to give a one-dimensional polymer. The 3-D arrangement of 1 constructs from H-bonds among dafone molecules and π-π stacking interactions among dissociative dafone molecules. These weak interactions contribute to the stability of the title compound. DFT calculation was carried out to reveal its electronic structure.
基金the National Key R&D Program of"Strategic Advanced Electronic Materials"(No.2016YFB0401100)the National Natural Science Foundation of China(Grant No.61574077)+1 种基金Major Program of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.19KJA460005)Natural Science Foundation of Jiangsu Province(BK20170961).
文摘Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy to improve the performance of polymer solar cells.The asymmetric design of the molecule is very beneficial for exciton dissociation and charge transport and will also fine-tune the molecular energy level to adjust the open-circuit voltage(Voc)further.The influence on the absorption range and absorption intensity will cause the short-circuit current density(Jsc)to change,resulting in higher device performance.The effect on molecular aggregation and molecular stacking of asymmetric structures can directly change the microscopic morphology,phase separation size,and the active layer's crystallinity.Very recently,thanks to the ingenious design of active layer materials and the optimization of devices,asymmetric non-fullerene polymer solar cells(A-NF-PSCs)have achieved remarkable development.In this review,we have summarized the latest developments in asymmetric small molecule acceptors(A-NF-SMAs)with the acceptor-donor-acceptor(A-D-A)and/or acceptor-donor-acceptor-donor-acceptor(A-D-A-D-A)structures,and the advantages of asymmetric small molecules are explored from the aspects of charge transport,molecular energy level and active layer accumulation morphology.
基金the financial support by the National Natural Science Foundation of China(51303099)the Natural Science Basic Research Plan in Shaanxi Province of China(2017JM5058)the Funded Projects for the Academic Leaders and Academic Backbones,Shaanxi Normal University(16QNGG008)
文摘Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the intrinsic shortcomings, such as weak absorption in the visible range, difficulty in modification and high cost, which limit the performance of the device and the large-scale application of this type of acceptors. In recent years, non-fullerene electron acceptor material has attracted the attention of scientists due to the advantages of adjustable energy level, wide absorption, simple synthesis, low processing cost and good solubility. Researchers can use the rich chemical means to design and synthesize organic small molecules and their oligomers with specific aggregation morphology and excellent optoelectronic prop- erties. Great advances in the field of synthesis, device engineering, and device physics of non-fullerene acceptors have been achieved in the last few years. At present, non-fullerene small molecules based photovoltaic devices achieve the highest efficiency more than 13% and the efficiency gap between fullerenetype and non-fullerene-type photovoltaic devices is gradually narrowing. In this review, we explore recent progress of non-fullerene small molecule electron acceptors that have been developed and led to highefficiency photovoltaic devices and put forward the prospect of development in the future.
基金financially supported by the National Key Research and Development Program of China (No. 2019YFA0705900) funded by MOSTthe Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007)the National Natural Science Foundation of China (No. 51521002)。
文摘Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular electron acceptors with 2-dimensional(2 D) configuration and conjugation are seldom reported.Herein, we designed and synthesized a series of novel 2 D electron acceptors for efficient NF-PSCs. With rational optimization on the conjugated moieties in both vertical and horizontal direction, these 2 D electron acceptors showed appealing properties, such as good planarity, full-spectrum absorption, high absorption extinction coefficient, and proper blend morphology with donor polymer. A high PCE of 9.76%was achieved for photovoltaic devices with PBDB-T as the donor and these 2 D electron acceptors. It was also found the charge transfer between the conjugated moieties in two directions of these 2 D molecules contributes to the utilization of absorbed photos, resulting in an exceptional EQE of 87% at 730 nm. This work presents rational design guidelines of 2 D electron acceptors, which showed great promise to achieve high-performance non-fullerene polymer solar cells.