期刊文献+
共找到68,109篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure and Hydrogen Absorption/Desorption Behavior of Mg23-xLaxNi10 Alloy
1
作者 董小平 杨丽颖 +2 位作者 PANG Yanrong WANG Tao WEN Lijuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期476-484,共9页
Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray... Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition. 展开更多
关键词 Mg-based alloy microstructure hydrogen absorption/desorption behavior
原文传递
Thermodynamics of hydrogen absorption and desorption in TC21 alloy 被引量:2
2
作者 Xiao-Li Wang Yong-Qing Zhao 《Rare Metals》 SCIE EI CAS CSCD 2020年第12期1413-1418,共6页
In this paper,it was addressed a hydrogen absorbing and desorbing thermodynamics inα+βtype TC21 titanium alloy with high strength and toughness based on thermodynamic experiments and calculation.The relationship bet... In this paper,it was addressed a hydrogen absorbing and desorbing thermodynamics inα+βtype TC21 titanium alloy with high strength and toughness based on thermodynamic experiments and calculation.The relationship between concentration(C),temperature(T),and pressure(P)of TC21 alloy is shown by P-C-T curves during hydrogen absorption and desorption process,which were measured by multistep hydrogenation/dehydrogenation methods from 625 to 750℃.The P-C-T isotherms at a given temperature were separated into three regions.The partial thermodynamic functions of hydrogen reaction were evaluated by a modified form of Sievert’s law and P-CoTrelation of different regions was expressed by the modified Sievert’s law.The results show that the enthalpy of hydrogen reaction in the first and third region relies on hydrogen content.According to Vant’s Hoff law,enthalpy and entropy of hydrogenation platform in TC21 alloys are-53.58 kJ·mol^(-1)and-127.41 J·K·mol^(-1),respectively.Compared with P-C-T curves of hydrogen absorption,that of hydrogen desorption exists hysteresis. 展开更多
关键词 Thermodynamic functions ENTHALPY ENTROPY Hydrogen absorption/desorption
原文传递
Enhanced electromagnetic wave absorption in biochar/yttrium iron garnet hybrid composites for electromagnetic interference shielding applications
3
作者 Ozgur Yasin Keskin 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期335-346,共12页
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the... Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz. 展开更多
关键词 BIOCHAR electromagnetic shielding electromagnetic wave absorption COMPOSITE
在线阅读 下载PDF
A sustainable and high value-added strategy under lignite and waste silicon powder to construct SiC nanowires for electromagnetic wave absorption
4
作者 Wenhao Wang Xiaolin Lan +6 位作者 Haoquan Hao Jingxiang Liu Yong Shuai Qinghe Jing Shouqing Yan Jie Guo Zhijiang Wang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期347-356,共10页
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi... The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers. 展开更多
关键词 LIGNITE waste silicon powder SiC nanowires electromagnetic wave absorption high value-added
在线阅读 下载PDF
Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review 被引量:25
5
作者 Qian Li Xi Lin +4 位作者 Qun Luo Yuʼan Chen Jingfeng Wang Bin Jiang Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期32-48,共17页
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal ki... High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced. 展开更多
关键词 hydrogen storage metal hydrides hydrogen absorption process hydrogen desorption process kinetic models
在线阅读 下载PDF
Absorption of sulfur dioxide using membrane and enhancement of desorption with ultrasound 被引量:6
6
作者 薛娟琴 李京仙 +3 位作者 卢曦 毛维博 王玉洁 吴明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期930-934,共5页
The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of... The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of the gas-phase,and the liquid-phase on absorption efficiency of sulfur dioxide and the influence of ultrasonic frequency,ultrasonic power and stirring speed on desorption efficiency of sulfur dioxide were examined.The results indicate that the absorption efficiency decreases with increasing flow velocity and sulfur dioxide content in gas-phase,and can be improved by increasing the concentration and the pH value of citrate solution.It is concluded that lower ultrasonic frequency results in a better degassing efficiency.The using of ultrasound in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in the some conditions,without changing the essence of chemical reaction. 展开更多
关键词 sulfur dioxide absorption desorption MEMBRANE ULTRASOUND CITRATE flue gas desulphurization
在线阅读 下载PDF
Hydrogen Absorption and Desorption during Heat Treatment of AISI 4140 Steel 被引量:1
7
作者 Ming-da ZHANG Mao-qiu WANG Han DONG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第10期951-955,共5页
Hydrogen plays an important role in the formation of quench cracks of structural steels. To clarify hydrogen ab- sorption and desorption during heat treatment of AISI 4140 steel, thermal desorption spectrometry (TDS... Hydrogen plays an important role in the formation of quench cracks of structural steels. To clarify hydrogen ab- sorption and desorption during heat treatment of AISI 4140 steel, thermal desorption spectrometry (TDS) analysis was carried out for the specimens in the as-rolled, as quenched, and quenched and tempered conditions. Results show that hydrogen content increased from 0. 127 ×10 6 in the as-rolled specimen to 0. 316 × 10-6 in the as-oil-quenched specimen. After tempering at 200 ℃, the hydrogen content in the oil-quenched specimen decreased to 0. 155 × 10-6 , and the peak temperature of hydrogen desorption increased from 200 to 360 ℃. From the dependence of hydrogen content in the as-quenched specimens on austenitizing time, it can be deduced that hydrogen absorption occurs during austenitizing. The simulation of hydrogen absorption contributes to a better understanding on the distribution of hy- drogen during the heat treatment in structural steels. 展开更多
关键词 STEEL hydrogen absorption heat treatment thermal desorption spectrometry
原文传递
Moisture Absorption and Desorption in an Ionomer-Based Encapsulant:A Type of Self-Breathing Encapsulant for CIGS Thin-Film PV Modules 被引量:2
8
作者 Miao Yang Raymund Schäffler +1 位作者 Tobias Repmann Kay Orgassa 《Engineering》 SCIE EI 2020年第12期1403-1407,共5页
As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing t... As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing to prevent moisture penetration is not required.The spontaneous moisture absorption and desorption of this encapsulant and its raw materials,poly(ethylene-co-acrylic acid)and an ionomer,are analyzed under different climatic conditions in this work.The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content(EMC).Higher air humidity results in a larger EMC.The homogenization of the absorbed water molecules is a diffusion-controlled process,in which temperature plays a dominant role.Nevertheless,the diffusion coefficient at a higher temperature is still relatively low.Hence,under normal climatic conditions for the application of PV modules,we believe that the investigated ionomer-based encapsulant can“breathe”the humidity:During the day,when there is higher relative humidity,it“inhales”(absorbs)moisture and restrains it within the outer edge of the module;then at night,when there is a lower relative humidity,it“exhales”(desorbs)the moisture.In this way,the encapsulant protects the cell from moisture ingress. 展开更多
关键词 IONOMER ENCAPSULANT Moisture absorption and desorption Cu(In Ga)Se2 photovoltaic module
在线阅读 下载PDF
MASS TRANSFER IN MEMBRANE ABSORPTIONDESORPTION OF AMMONIA FROM AMMONIA WATER 被引量:6
9
作者 王世昌 徐世昌 秦英杰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1993年第3期37-47,共11页
Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot ... Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance. 展开更多
关键词 mass transfer MEMBRANE absorption-desorption HOLLOW fiber AMMONIA water AMMONIA re-moval rate
在线阅读 下载PDF
Experimental Studies on the Influence of HCO<sub>3</sub>- on Absorption and Desorption of CO<sub>2</sub>from Ammonia Solution 被引量:1
10
作者 Shaojian Jiang Wei Zhong +2 位作者 Rui Peng Yong Jiang Jun Zhang 《Advances in Materials Physics and Chemistry》 2012年第4期240-243,共4页
With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental ... With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental analysis of the desorption quantity of CO2, desorption rate, CO2 loading and the absorption rate. The experimental results showed that, in experimental conditions, The desorption rate decreased gradually with increasing ammonia concentrations. The desorption rate increased 12%, 17%, 19% and 28.8% when 1 mol/L of ammonia solution is added in 0.1 mol/L, 0.3 mol/L, 0.5 mol/L and 1 mol/L of sodium bicarbonate. The higher concentration of ammonium bicarbonate solution which was added sodium bicarbonate,the more observably the effect of CO2 desorption was promoted. The absorption rate had dropped when absorption process added 0.3 mol/L sodium bicarbonate, the CO2 loading was a little change. 展开更多
关键词 Ammonia desorption the desorption Rate CO2 absorption CO2 Loading
在线阅读 下载PDF
Carbon dioxide induced degradation of diethanolamine during absorption and desorption processes 被引量:1
11
作者 Md.Sakinul Islam Kotaiah Naik Dhanavath +3 位作者 Nhol Kao Pradipto K.Bhattacharjee Brahim Si Ali Rozita Yusoff 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期293-302,共10页
Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operat... Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operation. In this work, CO_2 induced degradation of aqueous diethanolamine(DEA) solution was conducted in a 1.25 L jacketed glass reactor that functioned as an absorber and stripper at atmospheric conditions. Pure CO_2 was bubbled through the reactor until the solution became saturated. In this study, the concentrations of DEA used were in the range of concentrations between 2 mol·L^(-1) and 4 mol·L^(-1). In the degradation experiment, six generic cycles were conducted for each run. Each cycle was configured with the absorption and desorption of carbon dioxide at 55 ℃ and 100 ℃, respectively. Samples were collected after a predetermined experimental time and analyzed by ion chromatography(IC) to identify unknown ionic degradation products(DGPs). In the IC analysis, three different columns were used for anion, cation and ion exclusion systems, which are Metrosep A Supp 5150/4.0, Metrosep C Supp 4 150/4.0 and Metrosep Organic Acids, respectively. The major identified DGPs of D01 DEA2 M, D02 DEA3 M, and D03 DEA4 M are nitrite, acetate and ammonium. Phosphate product was found in the degraded amine samples which might be due to the contamination of water or chromatographic system. 展开更多
关键词 Degradation Diethanolamine absorption Stripping Gas sweetening process
在线阅读 下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption 被引量:1
12
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling Electromagnetic wave absorption
在线阅读 下载PDF
Magneto‑Dielectric Synergy and Multiscale Hierarchical Structure Design Enable Flexible Multipurpose Microwave Absorption and Infrared Stealth Compatibility 被引量:1
13
作者 Chen Li Leilei Liang +2 位作者 Baoshan Zhang Yi Yang Guangbin Ji 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期401-416,共16页
Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo... Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments. 展开更多
关键词 Microwave absorption Radar-infrared compatible stealth Wrinkled MXene Magneto-dielectric synergy MULTIFUNCTION
在线阅读 下载PDF
Integration of Electrical Properties and Polarization Loss Modulation on Atomic Fe–N‑RGO for Boosting Electromagnetic Wave Absorption 被引量:1
14
作者 Kaili Zhang Yuefeng Yan +4 位作者 Zhen Wang Guansheng Ma Dechang Jia Xiaoxiao Huang Yu Zhou 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期517-532,共16页
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ... Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism. 展开更多
关键词 Electromagnetic wave absorption Fe-N-RGO Dipole polarization Conduction loss Impedance matching
在线阅读 下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
15
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
16
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption 被引量:1
17
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 Magnetic heterointerfaces Phase evolution Interfacial polarization Magnetic coupling Electromagnetic wave absorption
在线阅读 下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy 被引量:1
18
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
在线阅读 下载PDF
Metal foams for the interfering energy conversion:Electromagnetic wave absorption,shielding,and sound attenuation 被引量:1
19
作者 Yujing Zhang Rui Liu +5 位作者 Chuyang Liu Yilin Zhang Liang Yan Jie Jiang Er Liu Feng Xu 《Journal of Materials Science & Technology》 2025年第12期258-282,共25页
Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight natur... Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight nature. These characteristics make them ideal for applications in vibration damping, heat insulation and weight reduction. In recent years, there has been increasing interest in the application of interfering energy conversion such as electromagnetic wave (EMW) and sound, where the metal foams could emerge as a solution. This paper will present a comprehensive review of the preparation methods as well as the interference energy converting mechanisms for metal foams. Typically, the progress and prospective aspects of metal foams for EMW absorption, electromagnetic interference (EMI) shielding and sound absorption have been emphasized. Through this review, we aspire to offer valuable insights for the development of multifunctional applications with metal foam materials. 展开更多
关键词 Metal foams EMW absorption EMI shielding Sound absorption
原文传递
Perspectives on metal-organic framework-derived microwave absorption materials 被引量:2
20
作者 Meng-Qi Wang Mao-Sheng Cao 《Journal of Materials Science & Technology》 2025年第11期37-52,共16页
Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to it... Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to its unique composition and bonding mode,which has advantages such as large specific surface area,high porosity,adjustable structure,and designable composition.Herein,MOF-derived MAMs are highlighted based on morphology and structure.The synthesis strategies of MOF-derived MAMs of different dimensions are discussed.On this basis,the structure-activity relationships can be deeply explored through the precise control of material structure and property by atomic engineering.Finally,perspectives are given for the existing problems of MOF-derived MAMs,which will open a new horizon and promote the development of MAMs. 展开更多
关键词 Metal-organic framework Atomic engineering Microwave absorption
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部