The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to...The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to their single-functionalities.Herein,a combined Prussian blue analogues derived and catalytical chemical vapor deposition strategy was proposed to produce hierarchical cubic sea urchin-like yolk–shell CoNi@Ndoped carbon(NC)-CoNi@carbon nanotubes(CNTs)mixed-dimensional multicomponent nanocomposites(MCNCs),which were composed of zerodimensional CoNi nanoparticles,three-dimensional NC nanocubes and onedimensional CNTs.Because of good impedance matching and attenuation characteristics,the designed CoNi@NC-CoNi@CNTs mixed-dimensional MCNCs exhibited excellent MA performances,which achieved a minimum reflection loss(RL_(min))of−71.70 dB at 2.78 mm and Radar Cross section value of−53.23 dB m^(2).More importantly,the acquired results demonstrated that CoNi@NC-CoNi@CNTs MCNCs presented excellent photothermal,antimicrobial and anti-corrosion properties owing to their hierarchical cubic sea urchin-like yolk–shell structure,highlighting their potential multifunctional applications.It could be seen that this finding not only presented a generalizable route to produce hierarchical cubic sea urchin-like yolk–shell magnetic NC-CNTs-based mixed-dimensional MCNCs,but also provided an effective strategy to develop multifunctional MCNCs and improve their environmental adaptabilities.展开更多
Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser...Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser pulses of known energy density through absorbing media allow their absorption parameter determination. The peak energy density w0P of second harmonic pulses of a mode-locked titanium sapphire laser at wavelength λP = 400 nm is determined by nonlinear energy transmission measurement TE through the dye ADS084BE (1,4-bis(9-ethyl-3-car-bazovinylene)-2-methoxy-5-(2’-ethyl-hexyloxy)-benzene) in tetrahydrofuran. TE(w0P) calibration curves are calculated for laser pulse peak energy density reading w0P from measured pulse energy transmissions TE. The ground-state absorption cross-section σP and the excited-state absorption cross-section σex at λP, and the number density N0 of the retinal Schiff base isoform RetA in pH 7.4 buffer of the blue-light adapted recombinant rhodopsin fragment of the histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii were determined by picosecond titanium sapphire second harmonic laser pulse energy transmission measurement TE through RetA as a function of laser input peak energy density w0P. The complete absorption cross-section spectrum展开更多
The interactions of charge transfer(CT)and nonradiative energy transfer(ET)in heterojunctions of two-dimensional(2D)transition metal dichalcogenides and quasi-2D single crystal perovskite thin films have the potential...The interactions of charge transfer(CT)and nonradiative energy transfer(ET)in heterojunctions of two-dimensional(2D)transition metal dichalcogenides and quasi-2D single crystal perovskite thin films have the potential applications in sensor,energy harvesting and solar cells.However,the CT and ET between them are not clear.Herein,we examine the ET in a(PEA)_(2)PbI_(4)/WS_(2)(PEA stands for phenethylamine and(PEA)_(2)PbI_(4)is abbreviated as PEPI)heterojunction using combined ultrafast spectroscopy and nonlinear optical absorption measurements.The ET from PEPI to WS_(2)predicted by band alignment is first observed with photoluminescence spectroscopy and then revealed by femtosecond transient absorption spectroscopy to exhibit a high ET efficiency approximating 68%.展开更多
Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challeng...Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challenge emerges from the misalignment between the mid-IR light wavelength range and molecular dimensions,culminating in a constrained absorption cross-section and diminished vibrational absorption coefficients(Supplementary data).展开更多
In today's era of continuous advancement in materials science,the properties of materials are constantly being enhanced,and their application fields are also expanding continuously.SAF(Super Absorbent Fiber),one s...In today's era of continuous advancement in materials science,the properties of materials are constantly being enhanced,and their application fields are also expanding continuously.SAF(Super Absorbent Fiber),one such material,stands out.Compared to traditional SAP(Super Absorbent Polymer),SAF boasts a unique fibrous form and exceptional performance,presenting broad application prospects.展开更多
AIM: To compare the combinative and individual effect of acarbose and gymnemic acid (GA) on maltose absorption and hydrolysis in small intestine to determine whether nutrient control in diabetic care can be improved b...AIM: To compare the combinative and individual effect of acarbose and gymnemic acid (GA) on maltose absorption and hydrolysis in small intestine to determine whether nutrient control in diabetic care can be improved by combination of them. METHODS: The absorption and hydrolysis of maltose were studied by cyclic perfusion of intestinal loops in situ and motility of the intestine was recorded with the intestinal ring in vitro using Wistar rats. RESULTS: The total inhibitory rate of maltose absorption was improved by the combination of GA (0.1g/L-1.0 g/L) and acarbose (0.1 mmol/L-2.0 mmol/L) throughout their effective duration (P 【0.05, U test of Mann-Whitney), although the improvement only could be seen at a low dosage during the first hour. With the combination, inhibitory duration of acarbose on maltose absorption was prolonged to 3h and the inhibitory effect onset of GA was fastened to 15 min. GA suppressed the intestinal mobility with a good correlation (r = 0.98) to the inhibitory effect of GA on maltose absorption and the inhibitory effect of 2 mmol/L (high dose) acarbose on maltose hydrolysis was dual modulated by 1g/L GA in vivo indicating that the combined effects involved the functional alteration of intestinal barriers. CONCLUSION: There are augmented effects of acarbose and GA,which involve pre-cellular and paracellular barriers. Diabetic care can be improved by employing the combination.展开更多
The analysis of trace elements in human hair for use as biomarkers continues to generate considerable interest in environmental and bioanalytical studies, medical diagnostics, and forensic science. This study investig...The analysis of trace elements in human hair for use as biomarkers continues to generate considerable interest in environmental and bioanalytical studies, medical diagnostics, and forensic science. This study investigated the concentrations of essential and toxic elements (Fe, Mg, Ca, Cu, Zn, Cr, Cd, and Pb) using flame atomic absorption spectroscopy (FAAS) in human scalp hair obtained from subjects living in Forsyth County, North Carolina, USA. The influence of age, sex, race, and smoking habits on the levels of trace elements in the hair samples were also investigated. Additionally, analyses were subjected to a statistical, regression, and principal component analysis to evaluate inter-elemental association and possible pattern recognition in hair samples. Furthermore, Ca/Mg and Zn/Cu ratios, which are often used to evaluate the degree of Ca and Cu utilization in humans and as markers for various health related issues including, atherosclerosis, hypertension, insulin sensitivity, and pancreatic cancer, were calculated. The overall mean concentrations of Fe (25 μg/g), Ca (710 μg/g), Mg (120 μg/g), Zn (190 μg/g), Cu (12 μg/g), and Cr (0.20 μg/g) were found in hair samples. The trace element concentrations varied widely in hair samples as demonstrated by large range of concentrations obtained for each element. However, levels of Cd and Pb elements of <0.030 μg/g were detected in hair sample. In general, the levels of the trace elements in hair samples were poorly correlated. However, significant correlations were found between Ca and Mg (r = 0.840, p = 0.05). The levels of Fe, Ca, Mg, Zn, Cu, and Cr in hair samples and the calculated Ca/Mg and Zn/Cu ratios were found to be largely correlated with age, race, sex, and smoking habits.展开更多
The International Maritime Organization(IMO)aims to reduce shipping greenhouse gas emissions by 70%by 2050,positioning onboard carbon capture(OCC)systems as essential tools,with chemical absorption being particularly ...The International Maritime Organization(IMO)aims to reduce shipping greenhouse gas emissions by 70%by 2050,positioning onboard carbon capture(OCC)systems as essential tools,with chemical absorption being particularly favorable due to its retrofit viability.This review analyzes advancements in chemical absorption technologies specific to shipborne applications,focusing on absorbent development,absorption tower optimization,and system integration.This article begins with an overview of OCC principles and advantages,followed by a discussion of technological progress,including feasibility studies and project outcomes.It explores various chemical absorbents,assessing performance,degradation,and emissions.The structural configurations of absorption towers and their modeling techniques are examined,alongside challenges such as limited vessel space,energy constraints,and gas-liquid distribution inefficiencies.Future directions emphasize the need for innovative absorbent designs,advanced simulation for tower optimization,and enhanced integration with ship energy systems,including renewable energy and waste heat recovery.The potential for intelligent technologies to enable real-time monitoring and automated management of carbon capture systems is highlighted.Finally,further investigations into fundamental interfaces and reaction kinetics are essential for advancing shipborne carbon capture technologies,providing a crucial reference for researchers and practitioners in the field.展开更多
Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,...Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.展开更多
This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal h...This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies.展开更多
Inverse bremsstrahlung absorption in laser-heated plasmas is studied using the Fokker–Planck equation in the low-field limit.Compared with the commonly used fitting formulas of Langdon and Matte et al.,our work emplo...Inverse bremsstrahlung absorption in laser-heated plasmas is studied using the Fokker–Planck equation in the low-field limit.Compared with the commonly used fitting formulas of Langdon and Matte et al.,our work employs fewer approximations and provides more accurate predictions for the super-Gaussian orderβand the heating rate.Simulation results show that the super-Gaussian order is generally lower than the fitting results of Matte et al.,which leads to an increase in absorption.However,we find two other factors that reduce absorption:the high-order term of the collision frequency and the effects caused by high laser intensity.Therefore,the final simulated absorption can either be higher or lower,depending on the conditions.These phenomena are theoretically analyzed using the Fokker–Planck equation.Fitting formulas are proposed for the super-Gaussian order and the heating rate,showing a discrepancy within∼10%of the simulation results.We also compare the simulation results with the experimental results from several recent papers.展开更多
The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-...The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-frequency sound waves,a novel semi-active sound absorption method has been introduced.This method modulates the surface impedance of a loudspeaker positioned behind the sound-absorbing material,thereby altering the sound absorption coefficient.The theoretical sound absorption coefficient is calculated using MATLAB and compared with the experimental one.Results show that the method can effectively modulates the absorption coefficient in response to varying incident sound wave frequencies,ensuring that it remains at its peak value.展开更多
There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and grea...There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft.展开更多
The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study pr...The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study presents a compact energy absorption structure(CE)that integrates the advantages of cutting rings and thin-walled tube modules,offering a solution with the high space utilization and the superior crashworthiness.Through theoretical modeling and experimental validation using a drop-weight test system,we analyzed the dynamic response and energy absorption characteristics of the CE.Comparative analysis with existing structures,namely the cutting shear rings(CSR)energy absorption structure and thin-walled tube structure(TW),revealed that the CE significantly improves specific energy absorption(SEA)by 102.76%and 61.54%,respectively,and optimizes crush force efficiency(CFE)by increasing 8.23%and 5.49%compared to CSR and TW.The innovative design of the CE,featuring deformation gradient and delay response strategies,showcases its potential for practical application in engineering,advancing the field of crashworthiness engineering.展开更多
A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modifie...A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modified reaction acceleration method is adopted and validated in the three-dimensional model. Seven ground motions are selected and the peak ground acceleration is adjusted to 0.2 g, 0.4 g and 0.6 g. The impact of the void ratio and thickness of the porous shock absorption layer is studied, while the surrounding rock grade and tunnel depth are also investigated. The numerical results show that the porous shock absorption layer has good shock absorption performance and can effectively reduce the maximum internal force of the secondary lining, but it cannot reduce the maximum horizontal relative displacement of the secondary lining. The circumferential rubber strip in the porous shock absorption layer will reduce shock absorption performance. The results of parameter analysis indicate that the shock absorption performance of the porous shock absorption layer increases with the increase of the void ratio and thickness, and it has good shock absorption performance under different surrounding rock grades and tunnel depths.展开更多
Carbon dioxide(CO_(2))is the predominant greenhouse gas in the Earth’s atmosphere and plays a crucial role in global warming.Given the inherent limitations of monoethanolamine absorbents in current commercial large-s...Carbon dioxide(CO_(2))is the predominant greenhouse gas in the Earth’s atmosphere and plays a crucial role in global warming.Given the inherent limitations of monoethanolamine absorbents in current commercial large-scale CO_(2)capture applications,amino acid ionic liquids(AAILs)have garnered extensive interest in this field due to their adjustable structure,low volatility,high thermal stability,and significant absorption capacity.However,the number of comprehensive reviews recently published on the CO_(2)absorption by AAILs remains limited.In addition,researchers have differing opinions on the AAILs/CO_(2)reaction mechanisms.Therefore,this review provides a thorough overview of the reaction mechanisms and structure-activity relationships associated with AAILs for CO_(2)capture.Moreover,it outlines the research advancements in pure AAILs and their mixtures,including aqueous AAILs and AAIL-organic solvent mixtures.The effects of varying ionic structures and additives on the absorption properties of AAILs are examined in detail.In conclusion,although AAILs exhibit high CO_(2)absorption loading and possess numerous appealing characteristics,further research is essential to comprehensively evaluate their viability for large-scale CO_(2)capture from flue gas.展开更多
Utilizing transporter-mediated drug delivery to achieve effective oral absorption emerges as a promising strategy.Researchers have been concentrated on discovering solutions to the issues of low solubility and poor pe...Utilizing transporter-mediated drug delivery to achieve effective oral absorption emerges as a promising strategy.Researchers have been concentrated on discovering solutions to the issues of low solubility and poor permeability of insoluble drugs,whereas,current reports have revealed that drug transporter proteins are abundantly expressed in the mucosa of intestinal epithelial cells,and that their mediated drug absorption effectively improved the bioavailability of orally administered drugs.There are two main categories based on the transporter mechanism,which include the family of ATP-binding cassette(ABC)transporters with efflux effects that reduce drug bioavailability and the family of solute carriers(SLC)transporters with uptake effects that promote drug absorption,respectively.Thus,we review studies of intestinal transporter-mediated delivery of drugs to enhance oral absorption,including the types of intestinal transporters,distribution characteristics,and strategies for enhancing oral absorption using transporter-mediated drug delivery systems are summarized,with the aim of providing important theoretical references for the development of intestinal-targeted delivery system.展开更多
Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distin...Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field.展开更多
Three sets of MXene(Ti_(3)C_(2)T_(x))@nano-Fe_(1)Co_(0.8)Ni_(1)composites with 15,45,and 90 mg MXene were prepared by in-situ liquid-phase deposition to effectively investigate the impact of the relationship between M...Three sets of MXene(Ti_(3)C_(2)T_(x))@nano-Fe_(1)Co_(0.8)Ni_(1)composites with 15,45,and 90 mg MXene were prepared by in-situ liquid-phase deposition to effectively investigate the impact of the relationship between MXene(Ti_(3)C_(2)T_(x))and nano-Fe_(1)Co_(0.8)Ni_(1)magnetic particles on the electromagnetic absorption properties of the composites.The microstructure,static magnetic properties,and electromag-netic absorption performance of these composites were studied.Results indicate that the MXene@nano-Fe_(1)Co_(0.8)Ni_(1)composites were primarily composed of face-centered cubic crystal structure particles and MXene,with spherical Fe_(1)Co_(0.8)Ni_(1)particles uniformly distrib-uted on the surface of the multilayered MXene.The alloy particles had an average particle size of approximately 100 nm and exhibited good dispersion without noticeable particle aggregation.With the increase in MXene content,the specific saturation magnetic and coer-civity of the composite initially decreased and then increased,displaying typical soft magnetic properties.Compared with those of the Fe_(1)Co_(0.8)Ni_(1)magnetic alloy particles alone,MXene addition caused an increasing trend in the real and imaginary parts of the dielectric constant of the composite.Meanwhile,the real and imaginary parts of the magnetic permeability exhibit decreasing trend.With the in-crease in MXene addition,the material attenuation constant increased and the impedance matching decreased.The minimum reflection loss increased,and the maximum effective absorption bandwidth decreased.When the MXene addition was 90 mg,the composite exhib-ited a minimum reflection loss of-46.9 dB with a sample thickness of 1.1 mm and a maximum effective absorption bandwidth of 3.60 GHz with a sample thickness of 1.0 mm.The effective absorption bandwidth of the composites and their corresponding thicknesses showed a decreasing trend with the increase in MXene addition,reducing by 50%from 1.5 mm without MXene addition to 1 mm with 90 mg of MXene addition.展开更多
The advancement of wireless technologies has increased the global demand for ubiquitous connectivity.However,this surge has increased electromagnetic pollution.This study introduces a composite comprising a polymer ma...The advancement of wireless technologies has increased the global demand for ubiquitous connectivity.However,this surge has increased electromagnetic pollution.This study introduces a composite comprising a polymer matrix(polydimethylsiloxane,PDMS)and a magnetic filler(carbonyl iron powder,CIP)to effectively absorb electromagnetic waves(EMW)and suppress electromagnetic noise,while exhibiting good mechanical properties.Eutectic gallium–indium(EGa In)liquid metal(LM)was introduced to improve the insulating properties of magnetic fillers.A core–shell structure was obtained by coating the CIP particles with EGa In,thereby combining magnetic and dielectric materials to enhance EMW absorption.The fluid characteristics of the LM improved the mechanical properties,whereas its electrical conductivity enhanced interfacial polarization loss,thereby augmenting the dielectric loss value of the composites.Moreover,the application of mechanical strain enhanced the EMW absorption of the LM/CIP/PDMS composites due to the formation of a conductive LM network.展开更多
基金support from the National Natural Science Foundation of China(U21A2093)Shaanxi Province Key Research and Development Plan Project(2023-YBGY-461)+4 种基金Platform of Science and Technology and Talent Team Plan of Guizhou province(GCC[2023]007)Guizhou Provincial Basic Research Program(Natural Science)(No.ZK[2025]Key 086)Fok Ying Tung Education Foundation(171095)financial support,Innovation Capability Support Program of Shaanxi(2024RS-CXTD-57)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2024094)。
文摘The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to their single-functionalities.Herein,a combined Prussian blue analogues derived and catalytical chemical vapor deposition strategy was proposed to produce hierarchical cubic sea urchin-like yolk–shell CoNi@Ndoped carbon(NC)-CoNi@carbon nanotubes(CNTs)mixed-dimensional multicomponent nanocomposites(MCNCs),which were composed of zerodimensional CoNi nanoparticles,three-dimensional NC nanocubes and onedimensional CNTs.Because of good impedance matching and attenuation characteristics,the designed CoNi@NC-CoNi@CNTs mixed-dimensional MCNCs exhibited excellent MA performances,which achieved a minimum reflection loss(RL_(min))of−71.70 dB at 2.78 mm and Radar Cross section value of−53.23 dB m^(2).More importantly,the acquired results demonstrated that CoNi@NC-CoNi@CNTs MCNCs presented excellent photothermal,antimicrobial and anti-corrosion properties owing to their hierarchical cubic sea urchin-like yolk–shell structure,highlighting their potential multifunctional applications.It could be seen that this finding not only presented a generalizable route to produce hierarchical cubic sea urchin-like yolk–shell magnetic NC-CNTs-based mixed-dimensional MCNCs,but also provided an effective strategy to develop multifunctional MCNCs and improve their environmental adaptabilities.
文摘Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser pulses of known energy density through absorbing media allow their absorption parameter determination. The peak energy density w0P of second harmonic pulses of a mode-locked titanium sapphire laser at wavelength λP = 400 nm is determined by nonlinear energy transmission measurement TE through the dye ADS084BE (1,4-bis(9-ethyl-3-car-bazovinylene)-2-methoxy-5-(2’-ethyl-hexyloxy)-benzene) in tetrahydrofuran. TE(w0P) calibration curves are calculated for laser pulse peak energy density reading w0P from measured pulse energy transmissions TE. The ground-state absorption cross-section σP and the excited-state absorption cross-section σex at λP, and the number density N0 of the retinal Schiff base isoform RetA in pH 7.4 buffer of the blue-light adapted recombinant rhodopsin fragment of the histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii were determined by picosecond titanium sapphire second harmonic laser pulse energy transmission measurement TE through RetA as a function of laser input peak energy density w0P. The complete absorption cross-section spectrum
基金financially supported by the National Natural Science Foundation of China(Nos.52472153,11704081,and 62175210)Guangxi Natural Science Foundation(No.2020GXNSFAA297182)the special fund for"Guangxi Bagui Scholars,"National Science and Technology Innovation Talent Cultivation Program(No.2023BZRC016)
文摘The interactions of charge transfer(CT)and nonradiative energy transfer(ET)in heterojunctions of two-dimensional(2D)transition metal dichalcogenides and quasi-2D single crystal perovskite thin films have the potential applications in sensor,energy harvesting and solar cells.However,the CT and ET between them are not clear.Herein,we examine the ET in a(PEA)_(2)PbI_(4)/WS_(2)(PEA stands for phenethylamine and(PEA)_(2)PbI_(4)is abbreviated as PEPI)heterojunction using combined ultrafast spectroscopy and nonlinear optical absorption measurements.The ET from PEPI to WS_(2)predicted by band alignment is first observed with photoluminescence spectroscopy and then revealed by femtosecond transient absorption spectroscopy to exhibit a high ET efficiency approximating 68%.
基金supported by National Natural Science Foundation of China(Grant No.:32301161)the Natural Scientific Foundation of Hunan Province,China(Grant No.:2023JJ60052)+3 种基金the Scientific Research Project of Hunan Provincial Health Commission,China(Grant No.:202112062218,20190161)the Scientific Research Project of Hunan Provincial Department of Education,China(Grant No.:22B0455)the Clinical“4310”Project of the University of South China,China(Grant No.:20224310NHYCG02)the Doctoral Scientific Research Foundation of University of South China,China(Grant No.:200XQD042).
文摘Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challenge emerges from the misalignment between the mid-IR light wavelength range and molecular dimensions,culminating in a constrained absorption cross-section and diminished vibrational absorption coefficients(Supplementary data).
文摘In today's era of continuous advancement in materials science,the properties of materials are constantly being enhanced,and their application fields are also expanding continuously.SAF(Super Absorbent Fiber),one such material,stands out.Compared to traditional SAP(Super Absorbent Polymer),SAF boasts a unique fibrous form and exceptional performance,presenting broad application prospects.
基金Supported by Grant for Promotion of Science from Tottori Bioscience Foundation(1997-1998)Japan and Japanese Government(Ministry of Education,Science and Culture of Japan,MONBUSHO)scholarship No.933241(1994-1999)Japan in part.Dr.Luo was supported by the scholarships.
文摘AIM: To compare the combinative and individual effect of acarbose and gymnemic acid (GA) on maltose absorption and hydrolysis in small intestine to determine whether nutrient control in diabetic care can be improved by combination of them. METHODS: The absorption and hydrolysis of maltose were studied by cyclic perfusion of intestinal loops in situ and motility of the intestine was recorded with the intestinal ring in vitro using Wistar rats. RESULTS: The total inhibitory rate of maltose absorption was improved by the combination of GA (0.1g/L-1.0 g/L) and acarbose (0.1 mmol/L-2.0 mmol/L) throughout their effective duration (P 【0.05, U test of Mann-Whitney), although the improvement only could be seen at a low dosage during the first hour. With the combination, inhibitory duration of acarbose on maltose absorption was prolonged to 3h and the inhibitory effect onset of GA was fastened to 15 min. GA suppressed the intestinal mobility with a good correlation (r = 0.98) to the inhibitory effect of GA on maltose absorption and the inhibitory effect of 2 mmol/L (high dose) acarbose on maltose hydrolysis was dual modulated by 1g/L GA in vivo indicating that the combined effects involved the functional alteration of intestinal barriers. CONCLUSION: There are augmented effects of acarbose and GA,which involve pre-cellular and paracellular barriers. Diabetic care can be improved by employing the combination.
文摘The analysis of trace elements in human hair for use as biomarkers continues to generate considerable interest in environmental and bioanalytical studies, medical diagnostics, and forensic science. This study investigated the concentrations of essential and toxic elements (Fe, Mg, Ca, Cu, Zn, Cr, Cd, and Pb) using flame atomic absorption spectroscopy (FAAS) in human scalp hair obtained from subjects living in Forsyth County, North Carolina, USA. The influence of age, sex, race, and smoking habits on the levels of trace elements in the hair samples were also investigated. Additionally, analyses were subjected to a statistical, regression, and principal component analysis to evaluate inter-elemental association and possible pattern recognition in hair samples. Furthermore, Ca/Mg and Zn/Cu ratios, which are often used to evaluate the degree of Ca and Cu utilization in humans and as markers for various health related issues including, atherosclerosis, hypertension, insulin sensitivity, and pancreatic cancer, were calculated. The overall mean concentrations of Fe (25 μg/g), Ca (710 μg/g), Mg (120 μg/g), Zn (190 μg/g), Cu (12 μg/g), and Cr (0.20 μg/g) were found in hair samples. The trace element concentrations varied widely in hair samples as demonstrated by large range of concentrations obtained for each element. However, levels of Cd and Pb elements of <0.030 μg/g were detected in hair sample. In general, the levels of the trace elements in hair samples were poorly correlated. However, significant correlations were found between Ca and Mg (r = 0.840, p = 0.05). The levels of Fe, Ca, Mg, Zn, Cu, and Cr in hair samples and the calculated Ca/Mg and Zn/Cu ratios were found to be largely correlated with age, race, sex, and smoking habits.
基金supported by the National Natural Science Foundation of China(51876118)。
文摘The International Maritime Organization(IMO)aims to reduce shipping greenhouse gas emissions by 70%by 2050,positioning onboard carbon capture(OCC)systems as essential tools,with chemical absorption being particularly favorable due to its retrofit viability.This review analyzes advancements in chemical absorption technologies specific to shipborne applications,focusing on absorbent development,absorption tower optimization,and system integration.This article begins with an overview of OCC principles and advantages,followed by a discussion of technological progress,including feasibility studies and project outcomes.It explores various chemical absorbents,assessing performance,degradation,and emissions.The structural configurations of absorption towers and their modeling techniques are examined,alongside challenges such as limited vessel space,energy constraints,and gas-liquid distribution inefficiencies.Future directions emphasize the need for innovative absorbent designs,advanced simulation for tower optimization,and enhanced integration with ship energy systems,including renewable energy and waste heat recovery.The potential for intelligent technologies to enable real-time monitoring and automated management of carbon capture systems is highlighted.Finally,further investigations into fundamental interfaces and reaction kinetics are essential for advancing shipborne carbon capture technologies,providing a crucial reference for researchers and practitioners in the field.
文摘Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.
文摘This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies.
基金supported by the Natural Science Foundation of China(Grant Nos.12035002,12405235,and U2430207)the China Postdoctoral Science Foundation(Grant No.2023M740336)the CAEP foundation(Grant No.YZJJZQ2023020).
文摘Inverse bremsstrahlung absorption in laser-heated plasmas is studied using the Fokker–Planck equation in the low-field limit.Compared with the commonly used fitting formulas of Langdon and Matte et al.,our work employs fewer approximations and provides more accurate predictions for the super-Gaussian orderβand the heating rate.Simulation results show that the super-Gaussian order is generally lower than the fitting results of Matte et al.,which leads to an increase in absorption.However,we find two other factors that reduce absorption:the high-order term of the collision frequency and the effects caused by high laser intensity.Therefore,the final simulated absorption can either be higher or lower,depending on the conditions.These phenomena are theoretically analyzed using the Fokker–Planck equation.Fitting formulas are proposed for the super-Gaussian order and the heating rate,showing a discrepancy within∼10%of the simulation results.We also compare the simulation results with the experimental results from several recent papers.
基金National Natural Science Foundation of China(No.51705545)。
文摘The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-frequency sound waves,a novel semi-active sound absorption method has been introduced.This method modulates the surface impedance of a loudspeaker positioned behind the sound-absorbing material,thereby altering the sound absorption coefficient.The theoretical sound absorption coefficient is calculated using MATLAB and compared with the experimental one.Results show that the method can effectively modulates the absorption coefficient in response to varying incident sound wave frequencies,ensuring that it remains at its peak value.
基金supported by the Basic Research Development Program of China(No.JCKY2021607B036)the National Natural Science Foundation of China(No.52275512).
文摘There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft.
基金Project(12272414)supported by the National Natural Science Foundation of ChinaProject(2023RC3045)supported by the Science and Technology Innovation Plan of Hunan Province,China。
文摘The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study presents a compact energy absorption structure(CE)that integrates the advantages of cutting rings and thin-walled tube modules,offering a solution with the high space utilization and the superior crashworthiness.Through theoretical modeling and experimental validation using a drop-weight test system,we analyzed the dynamic response and energy absorption characteristics of the CE.Comparative analysis with existing structures,namely the cutting shear rings(CSR)energy absorption structure and thin-walled tube structure(TW),revealed that the CE significantly improves specific energy absorption(SEA)by 102.76%and 61.54%,respectively,and optimizes crush force efficiency(CFE)by increasing 8.23%and 5.49%compared to CSR and TW.The innovative design of the CE,featuring deformation gradient and delay response strategies,showcases its potential for practical application in engineering,advancing the field of crashworthiness engineering.
基金Science and Technology Plan Project of Xizang Autonomous Region,China under Grant No.XZ202501YD0007。
文摘A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modified reaction acceleration method is adopted and validated in the three-dimensional model. Seven ground motions are selected and the peak ground acceleration is adjusted to 0.2 g, 0.4 g and 0.6 g. The impact of the void ratio and thickness of the porous shock absorption layer is studied, while the surrounding rock grade and tunnel depth are also investigated. The numerical results show that the porous shock absorption layer has good shock absorption performance and can effectively reduce the maximum internal force of the secondary lining, but it cannot reduce the maximum horizontal relative displacement of the secondary lining. The circumferential rubber strip in the porous shock absorption layer will reduce shock absorption performance. The results of parameter analysis indicate that the shock absorption performance of the porous shock absorption layer increases with the increase of the void ratio and thickness, and it has good shock absorption performance under different surrounding rock grades and tunnel depths.
基金supported by the Natural Science Foundation of Shanghai(Grant No.24ZR1426200)the support from the Key Program of the National Natural Science Foundation of China(Grant No.52236004)。
文摘Carbon dioxide(CO_(2))is the predominant greenhouse gas in the Earth’s atmosphere and plays a crucial role in global warming.Given the inherent limitations of monoethanolamine absorbents in current commercial large-scale CO_(2)capture applications,amino acid ionic liquids(AAILs)have garnered extensive interest in this field due to their adjustable structure,low volatility,high thermal stability,and significant absorption capacity.However,the number of comprehensive reviews recently published on the CO_(2)absorption by AAILs remains limited.In addition,researchers have differing opinions on the AAILs/CO_(2)reaction mechanisms.Therefore,this review provides a thorough overview of the reaction mechanisms and structure-activity relationships associated with AAILs for CO_(2)capture.Moreover,it outlines the research advancements in pure AAILs and their mixtures,including aqueous AAILs and AAIL-organic solvent mixtures.The effects of varying ionic structures and additives on the absorption properties of AAILs are examined in detail.In conclusion,although AAILs exhibit high CO_(2)absorption loading and possess numerous appealing characteristics,further research is essential to comprehensively evaluate their viability for large-scale CO_(2)capture from flue gas.
基金funded by the National Natural Science Foundation of China(No.82304730)the Project of Academic and Technical Leaders in Major Disciplines in Jiangxi Province(No.20212BCJL23060)+3 种基金the Natural Science Foundation of Jiangxi Province(No.20232BAB216128)the Project of Jiangxi Provincial Department of Education(No.GJJ2200977)the Jiangxi University of Chinese Medicine Science and Technology Innovation Team Development Program(Nos.CXTD-22004,CXTD-22008)the PhD Startup Foundation of Affiliated Hospital of Jiangxi University of Chinese Medicine(No.23KYQDZJ02).
文摘Utilizing transporter-mediated drug delivery to achieve effective oral absorption emerges as a promising strategy.Researchers have been concentrated on discovering solutions to the issues of low solubility and poor permeability of insoluble drugs,whereas,current reports have revealed that drug transporter proteins are abundantly expressed in the mucosa of intestinal epithelial cells,and that their mediated drug absorption effectively improved the bioavailability of orally administered drugs.There are two main categories based on the transporter mechanism,which include the family of ATP-binding cassette(ABC)transporters with efflux effects that reduce drug bioavailability and the family of solute carriers(SLC)transporters with uptake effects that promote drug absorption,respectively.Thus,we review studies of intestinal transporter-mediated delivery of drugs to enhance oral absorption,including the types of intestinal transporters,distribution characteristics,and strategies for enhancing oral absorption using transporter-mediated drug delivery systems are summarized,with the aim of providing important theoretical references for the development of intestinal-targeted delivery system.
基金supported by the National Natural Science Foundation of China(52172091,52172295)Defense Industrial Technology Development Program(JCKY2023605C002)+4 种基金Frontier Leading Technology Basic Research Major Project of Jiangsu Province(SBK2023050110)the National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering(NO.61422062301)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(ZHD202305)the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(ASMA202303)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0371).
文摘Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field.
文摘Three sets of MXene(Ti_(3)C_(2)T_(x))@nano-Fe_(1)Co_(0.8)Ni_(1)composites with 15,45,and 90 mg MXene were prepared by in-situ liquid-phase deposition to effectively investigate the impact of the relationship between MXene(Ti_(3)C_(2)T_(x))and nano-Fe_(1)Co_(0.8)Ni_(1)magnetic particles on the electromagnetic absorption properties of the composites.The microstructure,static magnetic properties,and electromag-netic absorption performance of these composites were studied.Results indicate that the MXene@nano-Fe_(1)Co_(0.8)Ni_(1)composites were primarily composed of face-centered cubic crystal structure particles and MXene,with spherical Fe_(1)Co_(0.8)Ni_(1)particles uniformly distrib-uted on the surface of the multilayered MXene.The alloy particles had an average particle size of approximately 100 nm and exhibited good dispersion without noticeable particle aggregation.With the increase in MXene content,the specific saturation magnetic and coer-civity of the composite initially decreased and then increased,displaying typical soft magnetic properties.Compared with those of the Fe_(1)Co_(0.8)Ni_(1)magnetic alloy particles alone,MXene addition caused an increasing trend in the real and imaginary parts of the dielectric constant of the composite.Meanwhile,the real and imaginary parts of the magnetic permeability exhibit decreasing trend.With the in-crease in MXene addition,the material attenuation constant increased and the impedance matching decreased.The minimum reflection loss increased,and the maximum effective absorption bandwidth decreased.When the MXene addition was 90 mg,the composite exhib-ited a minimum reflection loss of-46.9 dB with a sample thickness of 1.1 mm and a maximum effective absorption bandwidth of 3.60 GHz with a sample thickness of 1.0 mm.The effective absorption bandwidth of the composites and their corresponding thicknesses showed a decreasing trend with the increase in MXene addition,reducing by 50%from 1.5 mm without MXene addition to 1 mm with 90 mg of MXene addition.
基金supported by the Global Research Development Center(GRDC)Cooperative Hub Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(No.RS-202300257595)。
文摘The advancement of wireless technologies has increased the global demand for ubiquitous connectivity.However,this surge has increased electromagnetic pollution.This study introduces a composite comprising a polymer matrix(polydimethylsiloxane,PDMS)and a magnetic filler(carbonyl iron powder,CIP)to effectively absorb electromagnetic waves(EMW)and suppress electromagnetic noise,while exhibiting good mechanical properties.Eutectic gallium–indium(EGa In)liquid metal(LM)was introduced to improve the insulating properties of magnetic fillers.A core–shell structure was obtained by coating the CIP particles with EGa In,thereby combining magnetic and dielectric materials to enhance EMW absorption.The fluid characteristics of the LM improved the mechanical properties,whereas its electrical conductivity enhanced interfacial polarization loss,thereby augmenting the dielectric loss value of the composites.Moreover,the application of mechanical strain enhanced the EMW absorption of the LM/CIP/PDMS composites due to the formation of a conductive LM network.