Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and therm...Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.展开更多
The main theme of this research is to find the numerical results of stagnation point flow of micropolar fluid over a porous stretchable surface due to the physical effects of internal heat generation/absorption,meltin...The main theme of this research is to find the numerical results of stagnation point flow of micropolar fluid over a porous stretchable surface due to the physical effects of internal heat generation/absorption,melting heat transfer and chemical reaction via Keller-Box method(KBM).The graphs and tables are depicted and explained for various embedded parameters.The range of melting heat transfer parameter is 0≤M≤3,the range of chemical reaction parameter is 0≤K_(r)≤1 whereas the values of space-temperature dependent heat source/sink parameters lies in-0:4≤Q≤0:4 and-2≤Q*≤2.The upshots of the current problem illustrate that at fluid-solid interface,rate of HMT(heat and mass transfer)declined on escalating the values of stretching parameter.Moreover,as the values of internal heat source/sink parameter increases,heat transfer rate declines at fluid-solid interface.展开更多
文摘Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.
文摘The main theme of this research is to find the numerical results of stagnation point flow of micropolar fluid over a porous stretchable surface due to the physical effects of internal heat generation/absorption,melting heat transfer and chemical reaction via Keller-Box method(KBM).The graphs and tables are depicted and explained for various embedded parameters.The range of melting heat transfer parameter is 0≤M≤3,the range of chemical reaction parameter is 0≤K_(r)≤1 whereas the values of space-temperature dependent heat source/sink parameters lies in-0:4≤Q≤0:4 and-2≤Q*≤2.The upshots of the current problem illustrate that at fluid-solid interface,rate of HMT(heat and mass transfer)declined on escalating the values of stretching parameter.Moreover,as the values of internal heat source/sink parameter increases,heat transfer rate declines at fluid-solid interface.