Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(...Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(LPEN)to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios.The LPEN network,comprising three stages—MobileNet,Initial Stage,and Refinement Stage—is employed to swiftly extract image features,detect human key points,and refine them for accurate analysis.Subsequently,a Pose-aware Action Analysis Module(PAAM)captures the positional coordinates of human skeletal points in each frame.Finally,an Abnormal Action Inference Module(AAIM)evaluates whether abnormal fall-down or unauthorized trespass behavior is occurring.For fall-down recognition,three criteria—falling speed,main angles of skeletal points,and the person’s bounding box—are considered.To identify unauthorized trespass,emphasis is placed on the position of the ankles.Extensive experiments validate the effectiveness and efficiency of the proposed system in ensuring the safety and reliability of electric power training.展开更多
The core technology in an intelligent video surveillance system is that detecting and recognizing abnormal behaviors timely and accurately.The key breakthrough point in recognizing abnormal behaviors is how to obtain ...The core technology in an intelligent video surveillance system is that detecting and recognizing abnormal behaviors timely and accurately.The key breakthrough point in recognizing abnormal behaviors is how to obtain the effective features of the picture,so as to solve the problem of recognizing them.In response to this difficulty,this paper introduces an adjustable jump link coefficients model based on the residual network.The effective coefficients for each layer of the network can be set after using this model to further improving the recognition accuracy of abnormal behavior.A convolution kernel of 1×1 size is added to reduce the number of parameters for the purpose of improving the speed of the model in this paper.In order to reduce the noise of the data edge,and at the same time,improve the accuracy of the data and speed up the training,a BN(Batch Normalization)layer is added before the activation function in this network.This paper trains this network model on the public ImageNet dataset,and then uses the transfer learning method to recognize these abnormal behaviors of human in the UTI behavior dataset processed by the YOLO_v3 target detection network.Under the same experimental conditions,compared with the original ResNet-50 model,the improved model in this paper has a 2.8%higher accuracy in recognition of abnormal behaviors on the public UTI dataset.展开更多
A growing body of evidence explicitly suggests the significant role of inflammatory processes in the development and progressive deterioration of vascular diseases and cardiomyopathies.1-3 In recent years, a large var...A growing body of evidence explicitly suggests the significant role of inflammatory processes in the development and progressive deterioration of vascular diseases and cardiomyopathies.1-3 In recent years, a large variety of infections have been reported to be associated with the development of cardiomyopathy; the pathogenic factors include rickets, bacteria, protozoa and other parasites,and also, at least 17 viruses.2。展开更多
The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assem...The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors.展开更多
With the increasing number of digital devices generating a vast amount of video data,the recognition of abnormal image patterns has become more important.Accordingly,it is necessary to develop a method that achieves t...With the increasing number of digital devices generating a vast amount of video data,the recognition of abnormal image patterns has become more important.Accordingly,it is necessary to develop a method that achieves this task using object and behavior information within video data.Existing methods for detecting abnormal behaviors only focus on simple motions,therefore they cannot determine the overall behavior occurring throughout a video.In this study,an abnormal behavior detection method that uses deep learning(DL)-based video-data structuring is proposed.Objects and motions are first extracted from continuous images by combining existing DL-based image analysis models.The weight of the continuous data pattern is then analyzed through data structuring to classify the overall video.The performance of the proposed method was evaluated using varying parameter settings,such as the size of the action clip and interval between action clips.The model achieved an accuracy of 0.9817,indicating excellent performance.Therefore,we conclude that the proposed data structuring method is useful in detecting and classifying abnormal behaviors.展开更多
With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communicat...With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communication system.In particular,the abnormal signals may emulate the normal signals,which makes it very challenging for abnormal signal recognition.In this paper,we propose a new abnormal signal recognition scheme,which combines time-frequency analysis with deep learning to effectively identify synthetic abnormal communication signals.Firstly,we emulate synthetic abnormal communication signals including seven jamming patterns.Then,we model an abnormal communication signals recognition system based on the communication protocol between the transmitter and the receiver.To improve the performance,we convert the original signal into the time-frequency spectrogram to develop an image classification algorithm.Simulation results demonstrate that the proposed method can effectively recognize the abnormal signals under various parameter configurations,even under low signal-to-noise ratio(SNR)and low jamming-to-signal ratio(JSR)conditions.展开更多
To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment.In this paper,an advanced neural network model to identify t...To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment.In this paper,an advanced neural network model to identify the characteristics of the oplegnathus puncta-tus and predict its different periods of suffering from iridovirus disease is proposed based on the establishment of a data set.First of all,a standard format data set of oplegnathus punctatus and an abnormal format date set are established in order to verify the effective-ness of the method in this paper.And then,the feature extraction fusion method is used for preprocessing in terms of the abnormal format data set,which combines the edge fea-tures extracted by the improved multi-template Sobel operator and the color features extracted by the HSV model.Finally,an improved VGG-GoogleNet network recognition model comes into being through the fusion and improvement of the VGG and GoogleNet neural network structure.The experiments results show that the prediction accuracy rate for oplegnathus punctatus suffering from iridovirus disease in the the abnormal format data set and the standard format data set are improved,which reach 98.55%and 69.18%.展开更多
Purpose-The abnormal behaviors of staff at petroleum stations pose significant safety hazards.Addressing the challenges of high parameter counts,lengthy training periods and low recognition rates in existing 3D ResNet...Purpose-The abnormal behaviors of staff at petroleum stations pose significant safety hazards.Addressing the challenges of high parameter counts,lengthy training periods and low recognition rates in existing 3D ResNet behavior recognition models,this paper proposes GTB-ResNet,a network designed to detect abnormal behaviors in petroleum station staff.Design/methodology/approach-Firstly,to mitigate the issues of excessive parameters and computational complexity in 3D ResNet,a lightweight residual convolution module called the Ghost residual module(GhostNet)is introduced in the feature extraction network.Ghost convolution replaces standard convolution,reducing model parameters while preserving multi-scale feature extraction capabilities.Secondly,to enhance the model’s focus on salient features amidst wide surveillance ranges and small target objects,the triplet attention mechanism module is integrated to facilitate spatial and channel information interaction.Lastly,to address the challenge of short time-series features leading to misjudgments in similar actions,a bidirectional gated recurrent network is added to the feature extraction backbone network.This ensures the extraction of key long time-series features,thereby improving feature extraction accuracy.Findings-The experimental setup encompasses four behavior types:illegal phone answering,smoking,falling(abnormal)and touching the face(normal),comprising a total of 892 videos.Experimental results showcase GTB-ResNet achieving a recognition accuracy of 96.7%with a model parameter count of 4.46 M and a computational complexity of 3.898 G.This represents a 4.4%improvement over 3D ResNet,with reductions of 90.4%in parameters and 61.5%in computational complexity.Originality/value-Specifically designed for edge devices in oil stations,the 3D ResNet network is tailored for real-time action prediction.To address the challenges posed by the large number of parameters in 3D ResNet networks and the difficulties in deployment on edge devices,a lightweight residual module based on ghost convolution is developed.Additionally,to tackle the issue of low detection accuracy of behaviors amidst the noisy environment of petroleum stations,a triple attention mechanism is introduced during feature extraction to enhance focus on salient features.Moreover,to overcome the potential for misjudgments arising from the similarity of actions,a Bi-GRU model is introduced to enhance the extraction of key long-term features.展开更多
基金supportted by Natural Science Foundation of Jiangsu Province(No.BK20230696).
文摘Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(LPEN)to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios.The LPEN network,comprising three stages—MobileNet,Initial Stage,and Refinement Stage—is employed to swiftly extract image features,detect human key points,and refine them for accurate analysis.Subsequently,a Pose-aware Action Analysis Module(PAAM)captures the positional coordinates of human skeletal points in each frame.Finally,an Abnormal Action Inference Module(AAIM)evaluates whether abnormal fall-down or unauthorized trespass behavior is occurring.For fall-down recognition,three criteria—falling speed,main angles of skeletal points,and the person’s bounding box—are considered.To identify unauthorized trespass,emphasis is placed on the position of the ankles.Extensive experiments validate the effectiveness and efficiency of the proposed system in ensuring the safety and reliability of electric power training.
基金This research was funded by the Science and Technology Department of Shaanxi Province,China,Grant Number 2019GY-036.
文摘The core technology in an intelligent video surveillance system is that detecting and recognizing abnormal behaviors timely and accurately.The key breakthrough point in recognizing abnormal behaviors is how to obtain the effective features of the picture,so as to solve the problem of recognizing them.In response to this difficulty,this paper introduces an adjustable jump link coefficients model based on the residual network.The effective coefficients for each layer of the network can be set after using this model to further improving the recognition accuracy of abnormal behavior.A convolution kernel of 1×1 size is added to reduce the number of parameters for the purpose of improving the speed of the model in this paper.In order to reduce the noise of the data edge,and at the same time,improve the accuracy of the data and speed up the training,a BN(Batch Normalization)layer is added before the activation function in this network.This paper trains this network model on the public ImageNet dataset,and then uses the transfer learning method to recognize these abnormal behaviors of human in the UTI behavior dataset processed by the YOLO_v3 target detection network.Under the same experimental conditions,compared with the original ResNet-50 model,the improved model in this paper has a 2.8%higher accuracy in recognition of abnormal behaviors on the public UTI dataset.
文摘A growing body of evidence explicitly suggests the significant role of inflammatory processes in the development and progressive deterioration of vascular diseases and cardiomyopathies.1-3 In recent years, a large variety of infections have been reported to be associated with the development of cardiomyopathy; the pathogenic factors include rickets, bacteria, protozoa and other parasites,and also, at least 17 viruses.2。
基金The author received the funding from Sichuan Natural Science Foundation(2022NSFSC1892).
文摘The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors.
基金supported by Basic Science Research Program through the NationalResearch Foundation of Korea (NRF)funded by the Ministry of Education (2020R1A6A1A03040583).
文摘With the increasing number of digital devices generating a vast amount of video data,the recognition of abnormal image patterns has become more important.Accordingly,it is necessary to develop a method that achieves this task using object and behavior information within video data.Existing methods for detecting abnormal behaviors only focus on simple motions,therefore they cannot determine the overall behavior occurring throughout a video.In this study,an abnormal behavior detection method that uses deep learning(DL)-based video-data structuring is proposed.Objects and motions are first extracted from continuous images by combining existing DL-based image analysis models.The weight of the continuous data pattern is then analyzed through data structuring to classify the overall video.The performance of the proposed method was evaluated using varying parameter settings,such as the size of the action clip and interval between action clips.The model achieved an accuracy of 0.9817,indicating excellent performance.Therefore,we conclude that the proposed data structuring method is useful in detecting and classifying abnormal behaviors.
基金supported by Natural Science Foundation of China(No.62371231)Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu under Grant BK20222001Jiangsu Provincial Key Research and Development Program(No.BE2023027).
文摘With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communication system.In particular,the abnormal signals may emulate the normal signals,which makes it very challenging for abnormal signal recognition.In this paper,we propose a new abnormal signal recognition scheme,which combines time-frequency analysis with deep learning to effectively identify synthetic abnormal communication signals.Firstly,we emulate synthetic abnormal communication signals including seven jamming patterns.Then,we model an abnormal communication signals recognition system based on the communication protocol between the transmitter and the receiver.To improve the performance,we convert the original signal into the time-frequency spectrogram to develop an image classification algorithm.Simulation results demonstrate that the proposed method can effectively recognize the abnormal signals under various parameter configurations,even under low signal-to-noise ratio(SNR)and low jamming-to-signal ratio(JSR)conditions.
基金The work of this paper is jointly supported by the National Natural Science Foundation of China (U1706220,61472172)the Yantai Key R&D Project (2017ZH057,2018ZDCX003,2019XDHZ084).
文摘To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment.In this paper,an advanced neural network model to identify the characteristics of the oplegnathus puncta-tus and predict its different periods of suffering from iridovirus disease is proposed based on the establishment of a data set.First of all,a standard format data set of oplegnathus punctatus and an abnormal format date set are established in order to verify the effective-ness of the method in this paper.And then,the feature extraction fusion method is used for preprocessing in terms of the abnormal format data set,which combines the edge fea-tures extracted by the improved multi-template Sobel operator and the color features extracted by the HSV model.Finally,an improved VGG-GoogleNet network recognition model comes into being through the fusion and improvement of the VGG and GoogleNet neural network structure.The experiments results show that the prediction accuracy rate for oplegnathus punctatus suffering from iridovirus disease in the the abnormal format data set and the standard format data set are improved,which reach 98.55%and 69.18%.
文摘Purpose-The abnormal behaviors of staff at petroleum stations pose significant safety hazards.Addressing the challenges of high parameter counts,lengthy training periods and low recognition rates in existing 3D ResNet behavior recognition models,this paper proposes GTB-ResNet,a network designed to detect abnormal behaviors in petroleum station staff.Design/methodology/approach-Firstly,to mitigate the issues of excessive parameters and computational complexity in 3D ResNet,a lightweight residual convolution module called the Ghost residual module(GhostNet)is introduced in the feature extraction network.Ghost convolution replaces standard convolution,reducing model parameters while preserving multi-scale feature extraction capabilities.Secondly,to enhance the model’s focus on salient features amidst wide surveillance ranges and small target objects,the triplet attention mechanism module is integrated to facilitate spatial and channel information interaction.Lastly,to address the challenge of short time-series features leading to misjudgments in similar actions,a bidirectional gated recurrent network is added to the feature extraction backbone network.This ensures the extraction of key long time-series features,thereby improving feature extraction accuracy.Findings-The experimental setup encompasses four behavior types:illegal phone answering,smoking,falling(abnormal)and touching the face(normal),comprising a total of 892 videos.Experimental results showcase GTB-ResNet achieving a recognition accuracy of 96.7%with a model parameter count of 4.46 M and a computational complexity of 3.898 G.This represents a 4.4%improvement over 3D ResNet,with reductions of 90.4%in parameters and 61.5%in computational complexity.Originality/value-Specifically designed for edge devices in oil stations,the 3D ResNet network is tailored for real-time action prediction.To address the challenges posed by the large number of parameters in 3D ResNet networks and the difficulties in deployment on edge devices,a lightweight residual module based on ghost convolution is developed.Additionally,to tackle the issue of low detection accuracy of behaviors amidst the noisy environment of petroleum stations,a triple attention mechanism is introduced during feature extraction to enhance focus on salient features.Moreover,to overcome the potential for misjudgments arising from the similarity of actions,a Bi-GRU model is introduced to enhance the extraction of key long-term features.