以废打印机壳PC/ABS再生粒子(R-PC/ABS)为基体材料,对苯二酚双(二苯基磷酸脂)(HDP)和梯形倍半硅氧烷(TSQ)为阻燃剂,采用熔融共混制备了无卤阻燃PC/ABS,对其阻燃性能、力学性能、尺寸稳定性和负荷热变形温度(HDT)进行分析,结果发现,TSQ...以废打印机壳PC/ABS再生粒子(R-PC/ABS)为基体材料,对苯二酚双(二苯基磷酸脂)(HDP)和梯形倍半硅氧烷(TSQ)为阻燃剂,采用熔融共混制备了无卤阻燃PC/ABS,对其阻燃性能、力学性能、尺寸稳定性和负荷热变形温度(HDT)进行分析,结果发现,TSQ可以阻燃R-PC/ABS,并且,对力学性能、尺寸稳定性和HDT影响较小,R-PC/ABS/0.8TSQ的LOI为29.8%,阻燃达到3.0 mm V-0和2.0 mm V-1级;HDP可以有效地阻燃R-PC/ABS,但是,对力学性能、尺寸稳定性和HDT的负面影响较大,R-PC/ABS/12HDP的LOI为36.1%,阻燃可达到UL 941.0 mm V-0级,与R-PC/ABS相比,HDT、拉伸强度、弯曲强度、弯曲模量和缺口冲击强度分别降低了20.2℃、26.6%、14.5%、16.9%和60.9%;R-PC/ABS/0.8TSQ/6HDP的LOI为35.7%,阻燃级别达到UL 941.0 mm V-0级,与R-PC/ABS/12HDP相比,模后收缩率(PMS)降低了19.7%,HDT、拉伸强度、弯曲强度、弯曲模量和缺口冲击强度分别提高了13℃、21.0%、11.3%、14.3%和85.9%。展开更多
An accurate and simultaneous ab initio prediction for both light nuclei and nuclear matter has been a longstanding challenge in nuclear physics, due to the significant uncertainties associated with the three-nucleon f...An accurate and simultaneous ab initio prediction for both light nuclei and nuclear matter has been a longstanding challenge in nuclear physics, due to the significant uncertainties associated with the three-nucleon forces.In this Letter, we develop the relativistic quantum Monte Carlo methods for the nuclear ab initio problem, and calculate the ground-state energies of A ≤ 4 nuclei using the two-nucleon Bonn force with an unprecedented high accuracy. The present relativistic results significantly outperform the nonrelativistic results with only twonucleon forces. We demonstrate that both light nuclei and nuclear matter can be well described simultaneously in the relativistic ab initio calculations, even in the absence of three-nucleon forces, and a correlation between the properties of light A ≤ 4 nuclei and the nuclear saturation is revealed. This provides a quantitative understanding of the connection between the light nuclei and nuclear matter saturation properties.展开更多
文摘以废打印机壳PC/ABS再生粒子(R-PC/ABS)为基体材料,对苯二酚双(二苯基磷酸脂)(HDP)和梯形倍半硅氧烷(TSQ)为阻燃剂,采用熔融共混制备了无卤阻燃PC/ABS,对其阻燃性能、力学性能、尺寸稳定性和负荷热变形温度(HDT)进行分析,结果发现,TSQ可以阻燃R-PC/ABS,并且,对力学性能、尺寸稳定性和HDT影响较小,R-PC/ABS/0.8TSQ的LOI为29.8%,阻燃达到3.0 mm V-0和2.0 mm V-1级;HDP可以有效地阻燃R-PC/ABS,但是,对力学性能、尺寸稳定性和HDT的负面影响较大,R-PC/ABS/12HDP的LOI为36.1%,阻燃可达到UL 941.0 mm V-0级,与R-PC/ABS相比,HDT、拉伸强度、弯曲强度、弯曲模量和缺口冲击强度分别降低了20.2℃、26.6%、14.5%、16.9%和60.9%;R-PC/ABS/0.8TSQ/6HDP的LOI为35.7%,阻燃级别达到UL 941.0 mm V-0级,与R-PC/ABS/12HDP相比,模后收缩率(PMS)降低了19.7%,HDT、拉伸强度、弯曲强度、弯曲模量和缺口冲击强度分别提高了13℃、21.0%、11.3%、14.3%和85.9%。
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 12141501, 123B2080, 12435006, 12475117, and 11935003)the National Key Laboratory of Neutron Science and Technology (Grant No. NST202401016)+2 种基金the National Key R&D Program of China (Grant No. 2024YFE0109803)the High-performance Computing Platform of Peking Universitythe funding support from the State Key Laboratory of Nuclear Physics and Technology, Peking University (Grant No. NPT2023ZX03)。
文摘An accurate and simultaneous ab initio prediction for both light nuclei and nuclear matter has been a longstanding challenge in nuclear physics, due to the significant uncertainties associated with the three-nucleon forces.In this Letter, we develop the relativistic quantum Monte Carlo methods for the nuclear ab initio problem, and calculate the ground-state energies of A ≤ 4 nuclei using the two-nucleon Bonn force with an unprecedented high accuracy. The present relativistic results significantly outperform the nonrelativistic results with only twonucleon forces. We demonstrate that both light nuclei and nuclear matter can be well described simultaneously in the relativistic ab initio calculations, even in the absence of three-nucleon forces, and a correlation between the properties of light A ≤ 4 nuclei and the nuclear saturation is revealed. This provides a quantitative understanding of the connection between the light nuclei and nuclear matter saturation properties.