Scalable pressureless sintering of nanocrystalline alumina(Al2O_(3))ceramics is a challenging problem with great scientific and technological interest.This challenge was addressed in our recent works utilizing ultrafi...Scalable pressureless sintering of nanocrystalline alumina(Al2O_(3))ceramics is a challenging problem with great scientific and technological interest.This challenge was addressed in our recent works utilizing ultrafine a-Al2O_(3) nanopowders with exceptional sinterability combined with two-step sintering technique.Here the sintering mechanism and kinetic parameters(grain boundary diffusivity and its activation energy)were analyzed from constant heating-rate sintering experiments by three different sintering models and compared with existing sintering data in the literature.We found that the lowtemperature sintering of 4.7 nm a-Al2O_(3) nanopowders can be well explained by conventional sintering mechanism via grain boundary diffusion,with reasonable activation energy of 4e5 eV that is smaller than that of coarse Al2O_(3) powders and enhanced diffusivity.However,unphysically small activation energy could be obtained if an inappropriate model was used.Lastly,successful two-step sintering was demonstrated under different heating rates.Our work illustrates that the exceptional sinterability of ultrafine a-Al2O_(3) nanopowders are most likely contributed by small size(short diffusion distance),large surface area(large sintering driving force)and good dispersity rather than new sintering mechanism,and highlights the importance of fast firing and the non-equilibrium nature for the low-temperature sintering of such nanopowders.展开更多
The study systematically investigated the effects of master alloy addition containing rare earth elements La and Yb on the microstructures characteristic and tensile properties of A1Sil0Cu3 alloy. It was studied by me...The study systematically investigated the effects of master alloy addition containing rare earth elements La and Yb on the microstructures characteristic and tensile properties of A1Sil0Cu3 alloy. It was studied by means of optical microscopy, X-ray diffraction, scanning electron microscopy, energy diffraction spectnam and differential thermal analyzer. The results showed that the ad-dition of (La+Yb) obviously reduced the sizes of the primary a-Al phase and eutectic Si particles as well as 13-A15FeSi phase and im- proved the morphology of the primary a-A1 phase and eutectic Si particles. The optimum addition of(La+Yb) addition was 0.6 wt.%. Comparing the 0.6 wt.% (La+Yb) modified A1Sil0Cu3 alloy with the unmodified alloy, it was found that the mean diameter, mean area and SADS of primary a-A1 phase were decreased by 50.80%, 75.74% and 50.83% respectively; the aspect ratio, size (length) and mean area of eutectic Si particles were decreased by 66.30%, 81.78% and 78.99%, respectively, and the average size of the β-AlsFeSi phase was 16.4 pro. In addition, the addition of (La+Yb) greatly improved the tensile properties ofA1Si 10Cu3 alloy, especially in the ultimate tensile strength and elongation as a result of the significant improvement in microstructure.展开更多
For the wider applications,it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic AlSi-Cu alloys,which are typical light-weight wear-resistant materials.An increase in th...For the wider applications,it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic AlSi-Cu alloys,which are typical light-weight wear-resistant materials.An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys,but leads to the poor strength and ductility.It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently.In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance,ultrasonic irradiation of the molten metal during the solidification,which is called sono-solidification,was carried out from its molten state to just above the eutectic temperature.The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure,which are,hard primary silicon particles,soft non-equilibrium a-Al phase and the eutectic region.Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen.After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 oC,the quantitative optical microscope observation exhibits that the microstructure is composed of 18area%of hard primary silicon particles and 57area%of soft a-Al phase.In contrast,there exist only 5 area%of primary silicon particles and no a-Al phase in rheo-cast specimen with normally solidified slurry.Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5%of elongation,regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.展开更多
基金the support by the National Natural Science Foundation of China(No.51551201 and 51772137)the Fundamental Research Funds for the Central Universities(No.lzujbky-2019-sp03).
文摘Scalable pressureless sintering of nanocrystalline alumina(Al2O_(3))ceramics is a challenging problem with great scientific and technological interest.This challenge was addressed in our recent works utilizing ultrafine a-Al2O_(3) nanopowders with exceptional sinterability combined with two-step sintering technique.Here the sintering mechanism and kinetic parameters(grain boundary diffusivity and its activation energy)were analyzed from constant heating-rate sintering experiments by three different sintering models and compared with existing sintering data in the literature.We found that the lowtemperature sintering of 4.7 nm a-Al2O_(3) nanopowders can be well explained by conventional sintering mechanism via grain boundary diffusion,with reasonable activation energy of 4e5 eV that is smaller than that of coarse Al2O_(3) powders and enhanced diffusivity.However,unphysically small activation energy could be obtained if an inappropriate model was used.Lastly,successful two-step sintering was demonstrated under different heating rates.Our work illustrates that the exceptional sinterability of ultrafine a-Al2O_(3) nanopowders are most likely contributed by small size(short diffusion distance),large surface area(large sintering driving force)and good dispersity rather than new sintering mechanism,and highlights the importance of fast firing and the non-equilibrium nature for the low-temperature sintering of such nanopowders.
基金supported by the National Natural Science Foundation of China(51364035,51165032)Ministry of Education tied up with the Special Research Fund for the Doctoral Program for Higher School(20133601110001)Loading Program of Science and Technology of College of Jiangxi Province(KJLD14003)
文摘The study systematically investigated the effects of master alloy addition containing rare earth elements La and Yb on the microstructures characteristic and tensile properties of A1Sil0Cu3 alloy. It was studied by means of optical microscopy, X-ray diffraction, scanning electron microscopy, energy diffraction spectnam and differential thermal analyzer. The results showed that the ad-dition of (La+Yb) obviously reduced the sizes of the primary a-Al phase and eutectic Si particles as well as 13-A15FeSi phase and im- proved the morphology of the primary a-A1 phase and eutectic Si particles. The optimum addition of(La+Yb) addition was 0.6 wt.%. Comparing the 0.6 wt.% (La+Yb) modified A1Sil0Cu3 alloy with the unmodified alloy, it was found that the mean diameter, mean area and SADS of primary a-A1 phase were decreased by 50.80%, 75.74% and 50.83% respectively; the aspect ratio, size (length) and mean area of eutectic Si particles were decreased by 66.30%, 81.78% and 78.99%, respectively, and the average size of the β-AlsFeSi phase was 16.4 pro. In addition, the addition of (La+Yb) greatly improved the tensile properties ofA1Si 10Cu3 alloy, especially in the ultimate tensile strength and elongation as a result of the significant improvement in microstructure.
基金supported by the Grant-in Aid for Scientific Research(23560898)the Support Program for Forming Strategic Research Infrastructure from the Ministry of Education,Science,Sports and Culture,Japan
文摘For the wider applications,it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic AlSi-Cu alloys,which are typical light-weight wear-resistant materials.An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys,but leads to the poor strength and ductility.It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently.In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance,ultrasonic irradiation of the molten metal during the solidification,which is called sono-solidification,was carried out from its molten state to just above the eutectic temperature.The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure,which are,hard primary silicon particles,soft non-equilibrium a-Al phase and the eutectic region.Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen.After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 oC,the quantitative optical microscope observation exhibits that the microstructure is composed of 18area%of hard primary silicon particles and 57area%of soft a-Al phase.In contrast,there exist only 5 area%of primary silicon particles and no a-Al phase in rheo-cast specimen with normally solidified slurry.Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5%of elongation,regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.