期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
Asymptotically Exact a Posteriori Error Estimates for Non-Symmetric Eigenvalue Problems
1
作者 Jun ZHANG Jiayu HAN 《Journal of Mathematical Research with Applications》 2025年第3期411-426,共16页
This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator ... This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator is proposed for solving the convection-dominated non-symmetric eigenvalue problem with non-smooth eigenfunctions or multiple eigenvalues. Numerical examples confirm our theoretical analysis. 展开更多
关键词 Polynomial Preserving Recovery non-symmetric eigenvalue problem a posteriori error estimates
原文传递
Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method 被引量:1
2
作者 BAI YanHong WU YongKe XIE XiaoPing 《Science China Mathematics》 SCIE CSCD 2016年第9期1835-1850,共16页
Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of or... Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^(1+min){α,1}) is established for both the displacement approximation in H^1-norm and the stress approximation in L^2-norm under a mesh assumption, where α > 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results. 展开更多
关键词 linear elasticity hybrid stress finite element superconvergence recovery a posteriori error estimator
原文传递
A Priori and A Posteriori Error Estimates of Streamline Diffusion Finite Element Method for Optimal Control Problem Governed by Convection Dominated Diffusion Equation 被引量:5
3
作者 Ningning Yan Zhaojie Zhou 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第3期297-320,共24页
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc... In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results. 展开更多
关键词 Constrained optimal control problem convection dominated diffusion equation stream-line diffusion finite element method a priori error estimate a posteriori error estimate.
在线阅读 下载PDF
AN ASYMPTOTIC BEHAVIOR AND A POSTERIORI ERROR ESTIMATES FOR THE GENERALIZED SCHWARTZ METHOD OF ADVECTION-DIFFUSION EQUATION
4
作者 Salah BOULAARAS Mohammed Said TOUATI BRAHIM +1 位作者 Smail BOUZENADA Abderrahmane ZARAI 《Acta Mathematica Scientia》 SCIE CSCD 2018年第4期1227-1244,共18页
In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are prove... In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory. 展开更多
关键词 a posteriori error estimates GODDM aDVECTION-DIFFUSION Galerkin method Benssoussan-Lions' algorithm
在线阅读 下载PDF
RESIDUAL A POSTERIORI ERROR ESTIMATE TWO-GRID METHODS FOR THE STEADY (NAVIER-STOKES) EQUATION WITH STREAM FUNCTION FORM
5
作者 任春风 马逸尘 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第5期546-559,共14页
Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level met... Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution. 展开更多
关键词 two-level method Navier-Stokes equation residual a posteriori error estimate finite element method stream function form
在线阅读 下载PDF
Residual-type a posteriori error estimate for parabolic obstacle problems
6
作者 李京梁 马和平 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期473-478,共6页
In this paper, a posteriori error estimates were derived for piecewise linear finite element approximations to parabolic obstacle problems. The instrumental ingredient was introduced as a new interpolation operator wh... In this paper, a posteriori error estimates were derived for piecewise linear finite element approximations to parabolic obstacle problems. The instrumental ingredient was introduced as a new interpolation operator which has optimal approximation properties and preserves positivity. With the help of the interpolation operator the upper and lower bounds were obtained. 展开更多
关键词 finite element approximations variational inequalities parabolic obstacle problems a posteriori error estimates.
在线阅读 下载PDF
A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear,Dispersive Equations
7
作者 Ohannes A.Karakashian Michael M.Wise 《Communications on Applied Mathematics and Computation》 2022年第3期823-854,共32页
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ... The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators. 展开更多
关键词 Finite element methods Discontinuous Galerkin methods Korteweg-de Vries equation a posteriori error estimates Conservation laws Nonlinear equations Dispersive equations
在线阅读 下载PDF
A Posteriori Error Computations in Finite Element Method for Initial Value Problems
8
作者 K.S.Surana J.Abboud 《American Journal of Computational Mathematics》 2025年第1期81-128,共48页
A posteriori error computations in the space-time coupled and space-time decoupled finite element methods for initial value problems are essential:1)to determine the accuracy of the computed evolution,2)if the errors ... A posteriori error computations in the space-time coupled and space-time decoupled finite element methods for initial value problems are essential:1)to determine the accuracy of the computed evolution,2)if the errors in the coupled solutions are higher than an acceptable threshold,then a posteriori error computations provide measures for designing adaptive processes to improve the accuracy of the solution.How well the space-time approximation in each of the two methods satisfies the equations in the mathematical model over the space-time domain in the point wise sense is the absolute measure of the accuracy of the computed solution.When L2-norm of the space-time residual over the space-time domain of the computations approaches zero,the approximation φh(x,t)(,)→φ(x,t),the theoretical solution.Thus,the proximity of ||E||L_(2) ,the L_(2)-norm of the space-time residual function,to zero is a measure of the accuracy or the error in the computed solution.In this paper,we present a methodology and a computational framework for computing L2 E in the a posteriori error computations for both space-time coupled and space-time decoupled finite element methods.It is shown that the proposed a posteriori computations require h,p,k framework in both space-time coupled as well as space-time decoupled finite element methods to ensure that space-time integrals over space-time discretization are Riemann,hence the proposed a posteriori computations can not be performed in finite difference and finite volume methods of solving initial value problems.High-order global differentiability in time in the integration methods is essential in space-time decoupled method for posterior computations.This restricts the use of methods like Euler’s method,Runge-Kutta methods,etc.,in the time integration of ODE’s in time.Mathematical and computational details including model problem studies are presented in the paper.To authors knowledge,it is the first presentation of the proposed a posteriori error computation methodology and computational infrastructure for initial value problems. 展开更多
关键词 a posteriori error Computation Space-Time Coupled Space-Time Decoupled a Priori error estimation a posteriori error estimation hpk Scalar Product Spaces Minimally Conforming Scalar Product Spaces
在线阅读 下载PDF
RECONSTRUCTION-BASED A POSTERIORI ERROR ESTIMATES FOR THE L1 METHOD FOR TIME FRACTIONAL PARABOLIC PROBLEMS
9
作者 Jiliang Cao Aiguo Xiao Wansheng Wang 《Journal of Computational Mathematics》 2025年第2期345-368,共24页
In this paper,we study a posteriori error estimates of the L1 scheme for time discretizations of time fractional parabolic differential equations,whose solutions have generally the initial singularity.To derive optima... In this paper,we study a posteriori error estimates of the L1 scheme for time discretizations of time fractional parabolic differential equations,whose solutions have generally the initial singularity.To derive optimal order a posteriori error estimates,the quadratic reconstruction for the L1 method and the necessary fractional integral reconstruction for the first-step integration are introduced.By using these continuous,piecewise time reconstructions,the upper and lower error bounds depending only on the discretization parameters and the data of the problems are derived.Various numerical experiments for the one-dimensional linear fractional parabolic equations with smooth or nonsmooth exact solution are used to verify and complement our theoretical results,with the convergence ofαorder for the nonsmooth case on a uniform mesh.To recover the optimal convergence order 2-αon a nonuniform mesh,we further develop a time adaptive algorithm by means of barrier function recently introduced.The numerical implementations are performed on nonsmooth case again and verify that the true error and a posteriori error can achieve the optimal convergence order in adaptive mesh. 展开更多
关键词 Time fractional parabolic differential equations a posteriori error estimates Ll method Fractional integral reconstruction Quadratic reconstruction
原文传递
High accuracy eigensolution and its extrapolation for potential equations
10
作者 程攀 黄晋 曾光 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第12期1527-1536,共10页
From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are... From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are presented to obtain the eigensolutions that are used to solve Laplace's equations. The MQMs possess high accuracy and low computation complexity. The convergence and the stability are proved based on Anselone's collective and asymptotical compact theory. An asymptotic expansion with odd powers of the errors is presented. By the h3-Richardson extrapolation algorithm (EA), the accuracy order of the approximation can be greatly improved, and an a posteriori error estimate can be obtained as the self-adaptive algorithms. The efficiency of the algorithm is illustrated by examples. 展开更多
关键词 potential equation mechanical quadrature method Richardson extrapolation algorithm a posteriori error estimate
在线阅读 下载PDF
Adaptive Finite Element Method for Steady Convection-Diffusion Equation
11
作者 Gelaw Temesgen Mekuria Jakkula Anand Rao 《American Journal of Computational Mathematics》 2016年第3期275-285,共12页
This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary condi... This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments. 展开更多
关键词 Convection-Diffusion Problem Streamline Diffusion Finite Element Method Boundary and Interior Layers a posteriori error Estimators adaptive Mesh Refinement
在线阅读 下载PDF
OPTIMAL A POSTERIORI ERROR ESTIMATES OF THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR CONVECTION- DIFFUSION PROBLEMS IN ONE SPACE DIMENSION 被引量:1
12
作者 Mahboub Baccouch 《Journal of Computational Mathematics》 SCIE CSCD 2016年第5期511-531,共21页
In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in ... In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in our analysis is the recent optimal superconver- gence result in [Y. Yang and C.-W. Shu, J. Comp. Math., 33 (2015), pp. 323-340]. We first prove that the LDG solution and its spatial derivative, respectively, converge in the L2-norm to (p + 1)-degree right and left Radau interpolating polynomials under mesh re- finement. The order of convergence is proved to be p + 2, when piecewise polynomials of degree at most p are used. These results are used to show that the leading error terms on each element for the solution and its derivative are proportional to (p + 1)-degree right and left Radau polynomials. We further prove that, for smooth solutions, the a posteriori LDG error estimates, which were constructed by the author in an earlier paper, converge, at a fixed time, to the true spatial errors in the L2-norm at (.9(hp+2) rate. Finally, we prove that the global effectivity indices in the L2-norm converge to unity at (9(h) rate. These results improve upon our previously published work in which the order of convergence for the a posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our proofs are valid for arbitrary regular meshes using PP polynomials with p ≥ 1. Several numerical experiments are performed to validate the theoretical results. 展开更多
关键词 Local discontinuous Galerkin method Convection-diffusion problems Super-convergence Radau polynomials a posteriori error estimation.
原文传递
Adaptivity and A Posteriori Error Control for Bifurcation Problems Ⅰ:The Bratu Problem 被引量:1
13
作者 K.Andrew Cliffe Edward J.C.Hall +2 位作者 Paul Houston Eric T.Phipps Andrew G.Salinger 《Communications in Computational Physics》 SCIE 2010年第9期845-865,共21页
This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied.In particular,we study in detail the numerical approxima... This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied.In particular,we study in detail the numerical approximation of the Bratu problem,based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method.A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual(DWR)approach.Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator. 展开更多
关键词 Bifurcation theory Bratu problem a posteriori error estimation adaptivity discontinuous Galerkin methods
原文传递
THE A POSTERIORI ERROR ESTIMATOR OF SDG METHOD FOR VARIABLE COEFFICIENTS TIME-HARMONIC MAXWELL'S EQUATIONS
14
作者 Wei Yang Xin Liu +1 位作者 Bin He Yunqing Huang 《Journal of Computational Mathematics》 SCIE CSCD 2023年第2期263-286,共24页
In this paper,we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations.We propose two a posteriori error estimators,one is the recovery-type estimator,and... In this paper,we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations.We propose two a posteriori error estimators,one is the recovery-type estimator,and the other is the residual-type estimator.We first propose the curl-recovery method for the staggered discontinuous Galerkin method(SDGM),and based on the super-convergence result of the postprocessed solution,an asymptotically exact error estimator is constructed.The residual-type a posteriori error estimator is also proposed,and it's reliability and effectiveness are proved for variable coefficients time-harmonic Maxwell's equations.The efficiency and robustness of the proposed estimators is demonstrated by the numerical experiments. 展开更多
关键词 Maxwell’s equations a posteriori error estimation Staggered discontinuous Galerkin
原文传递
A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations 被引量:7
15
作者 CHEN YanPing HUANG YunQing YI NianYu 《Science China Mathematics》 SCIE 2008年第8期1376-1390,共15页
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem... In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control. 展开更多
关键词 Legendre Galerkin spectral method optimal control problems parabolic state equations a posteriori error estimates 49J20 65M60 65M70
原文传递
A UNIFIED A POSTERIORI ERROR ANALYSIS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF REACTIVE TRANSPORT EQUATIONS 被引量:9
16
作者 Ji-ming Yang Yan-ping Chen 《Journal of Computational Mathematics》 SCIE CSCD 2006年第3期425-434,共10页
Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-BabuSka-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Gal... Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-BabuSka-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution and given data, explicit estimators can be computed efficiently and directly, which can be used as error indicators for adaptation. Unlike in the reference [10], we obtain the error estimators in L^2 (L^2) norm by using duality techniques instead of in L^2(H^1) norm. 展开更多
关键词 a posteriori error estimates Duality techniques Discontinuous Galerkin methods
原文传递
Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms 被引量:4
17
作者 DU ShaoHong XIE XiaoPing 《Science China Mathematics》 SCIE 2008年第8期1440-1460,共21页
Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which ... Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p seminorm.The other one is proved to give a global upper bound of the error in Lp-norm.By taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders. 展开更多
关键词 Crouzeix-Raviart element nonconforming FEM a posteriori error estimator longest edge bisection 65N15 65N30 65N50
原文传递
A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF THE CAHN-HILLIARD EQUATION AND THE HELE-SHAW FLOW 被引量:3
18
作者 Xiaobing Feng Haijun Wu 《Journal of Computational Mathematics》 SCIE CSCD 2008年第6期767-796,共30页
This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that ... This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm. 展开更多
关键词 Cahn-Hilliard equation Hele-Shaw flow Phase transition Conforming elements Mixed finite element methods a posteriori error estimates adaptivity.
原文传递
ERROR ANALYSIS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH MEASURE DATA IN A NONCONVEX POLYGONAL DOMAIN
19
作者 Pratibha Shakya 《Journal of Computational Mathematics》 SCIE CSCD 2024年第6期1579-1604,共26页
This paper considers the finite element approximation to parabolic optimal control problems with measure data in a nonconvex polygonal domain.Such problems usually possess low regularity in the state variable due to t... This paper considers the finite element approximation to parabolic optimal control problems with measure data in a nonconvex polygonal domain.Such problems usually possess low regularity in the state variable due to the presence of measure data and the nonconvex nature of the domain.The low regularity of the solution allows the finite element approximations to converge at lower orders.We prove the existence,uniqueness and regularity results for the solution to the control problem satisfying the first order optimality condition.For our error analysis we have used piecewise linear elements for the approximation of the state and co-state variables,whereas piecewise constant functions are employed to approximate the control variable.The temporal discretization is based on the implicit Euler scheme.We derive both a priori and a posteriori error bounds for the state,control and co-state variables.Numerical experiments are performed to validate the theoretical rates of convergence. 展开更多
关键词 a priori and a posteriori error estimates Finite element method Measure data Nonconvex polygonal domain Optimal control problem
原文传递
A POSTERIORI ERROR ESTIMATE FOR BOUNDARY CONTROL PROBLEMS GOVERNED BY THE PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 被引量:3
20
作者 Wei Gong Ningning Yan 《Journal of Computational Mathematics》 SCIE CSCD 2009年第1期68-88,共21页
In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori er... In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods. 展开更多
关键词 Boundary control problems Finite element method a posteriori error estimate Parabolic partial differential equations.
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部