This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive s...This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive strategies are designed to tune all or only a small fraction of the coupling gains respectively.By constructing quadratic Lyapunov functions and utilizing fractional inequality techniques,Mittag-Leffler function,and Laplace transform,two sufficient conditions are derived for reaching network synchronization by using the proposed adaptive laws.Finally,two numerical examples are given to verify the theoretical results.展开更多
Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for ...Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for outer synchronization are derived analytically by applying the nonlinear control and the bidirectional coupling methods. The proposed synchronization method is applicable to almost all kinds of coupled fractional-order general complex dynamical networks. Neither a symmetric nor irreducible coupling configuration matrix is required. In addition, no constraint is imposed on the inner-coupling matrix. Numerical examples are also provided to demonstrate the validity of the presented synchronization scheme. Numeric evidence shows that both the feedback strength k and the fractional order a can be chosen appropriately to adjust the synchronization effect effectively.展开更多
This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 ...This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 〈 q 〈 1 is obtained based on the stability theory of the fractional-order system. The control method which combines active control with pinning control is then suggested to obtain the controllers. Furthermore, the adaptive strategy is applied to tune the control gains and coupling strength. Corresponding numerical simulations are performed to verify and illustrate the theoretical results.展开更多
Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This s...Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models.展开更多
In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilitie...In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.展开更多
A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has diff...A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has different numbers of equilibria for different ranges of parameters. The dynamics of the proposed system is investigated by means of phase portraits, Lyapunov exponents, bifurcation diagrams, and basins of attraction. The results show abundant dynamical characteristics. Particularly, the phenomena of extreme multistability as well as hidden attractors are discovered. In addition, the complex generalized projective synchronization is implemented between two fractional-order hyperchaotic complex systems with different fractional orders. Based on the fractional Lyapunov stability theorem, the synchronization controllers are designed, and the theoretical results are verified and demonstrated by numerical simulations. It lays the foundation for practical applications of the proposed system.展开更多
This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-...This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-turbine governing system with complex penstocks is built from an engineering application perspective. This model is described by state-space equations and is composed of the Francis hydro-turbine model, the fractional-order complex penstocks model, the third-order generator model, and the hydraulic speed governing system model. Based on stability theory for a fractional-order nonlinear system, this study discovers a basic law of the bifurcation points of the above system with a change in the fractional-order a. Secondly, the stable region of the governing system is investigated in detail,and nonlinear dynamical behaviors of the system are identified and studied exhaustively via bifurcation diagrams, time waveforms, phase orbits, Poincare maps, power spectrums and spectrograms. Results of these numerical experiments provide a theoretical reference for further studies of the stability of hydropower stations.展开更多
The complex derivative D^α±jβ, with α, β ∈ R+ is a generalization of the concept of integer derivative, where α = 1,β = 0. Fractional-order electric elements and circuits are becoming more and more attrac...The complex derivative D^α±jβ, with α, β ∈ R+ is a generalization of the concept of integer derivative, where α = 1,β = 0. Fractional-order electric elements and circuits are becoming more and more attractive. In this paper, the complexorder electric elements concept is proposed for the first time, and the complex-order elements are modeled and analyzed.Some interesting phenomena are found that the real part of the order affects the phase of output signal, and the imaginary part affects the amplitude for both the complex-order capacitor and complex-order memristor. More interesting is that the complex-order capacitor can do well at the time of fitting electrochemistry impedance spectra. The complex-order memristor is also analyzed. The area inside the hysteresis loops increases with the increasing of the imaginary part of the order and decreases with the increasing of the real part. Some complex case of complex-order memristors hysteresis loops are analyzed at last, whose loop has touching points beyond the origin of the coordinate system.展开更多
In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli pie...In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli piezoelectric beam are defined by a frame-invariant and dimensionally consistent Riesz-Caputo fractional-order derivatives.The strain energy,the work done by external loads,and the kinetic energy based on the fractional-order kinematic model are derived and expressed in explicit forms.The boundary conditions for the nonlocal Euler-Bernoulli beam are derived through variational principles.Furthermore,a finite element model for the fractional-order system is developed in order to obtain the numerical solutions to the integro-differential equations.The effects of the fractional order and the vibration order on the static bending and vibration responses of the Euler-Bernoulli piezoelectric beams are investigated numerically.The results from the present model are validated against the existing results in the literature,and it is demonstrated that they are theoretically consistent.Although this fractional finite element method(FEM)is presented in the context of a one-dimensional(1D)beam,it can be extended to higher dimensional fractional-order boundary value problems.展开更多
The aim of this paper is to study complex modified projective synchronization(CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate frac...The aim of this paper is to study complex modified projective synchronization(CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate fractional-order systems and active control method, control laws are derived to achieve CMPS in three situations including fractional-order complex Lorenz system driving fractional-order complex Chen system, fractional-order real Rssler system driving fractional-order complex Chen system, and fractionalorder complex Lorenz system driving fractional-order real Lü system. Numerical simulations confirm the validity and feasibility of the analytical method.展开更多
We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a n...We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.展开更多
The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapuno...The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapunov stability theory,quantized controllers are designed to guarantee that FMCNs can achieve synchronization in a limited time with and without coupling delay,respectively.Then,appropriate parameter update laws are obtained to identify the uncertain parameters in FMCNs.Finally,numerical simulation examples are given to validate the correctness of the theoretical results.展开更多
The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivativ...The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.展开更多
In this paper,the problem of combination projection synchronization of fractional-order complex dynamic networks with time-varying delay couplings and external interferences is studied.Firstly,the definition of combin...In this paper,the problem of combination projection synchronization of fractional-order complex dynamic networks with time-varying delay couplings and external interferences is studied.Firstly,the definition of combination projection synchronization of fractional-order complex dynamic networks is given,and the synchronization problem of the drive-response systems is transformed into the stability problem of the error system.In addition,time-varying delays and disturbances are taken into consideration to make the network synchronization more practical and universal.Then,based on Lyapunov stability theory and fractional inequality theory,the adaptive controller is formulated to make the drive and response systems synchronization by the scaling factors.The controller is easier to realize because there is no time-delay term in the controller.At last,the corresponding simulation examples demonstrate the effectiveness of the proposed scheme.展开更多
This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback con...This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback control based on discrete time state observations.In contrast to the existing works on integer-order derivative couplings,fractional derivative couplings are introduced into FCDNs.First,a useful lemma with respect to the relationship between the discrete time observations term and a continuous term is developed.Second,by utilizing an inequality technique and auxiliary functions,the rigorous global exponential synchronization analysis is given and synchronization criterions are achieved in terms of linear matrix inequalities(LMIs).Finally,two examples are provided to illustrate the correctness of the obtained results.展开更多
Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth acros...Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales.On the Wisconsin Diagnostic Breast Cancer dataset,seven ML algorithms were evaluated,with deep neural networks(DNNs)achieving the highest accuracy(97.72%).Key morphological features(area,radius,texture,and concavity)were identified as top malignancy predictors,aligning with clinical intuition.Beyond static classification,we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression.The model revealed clinically interpretable patterns:lower fractional orders correlated with prolonged aggressive growth,while higher orders indicated rapid stabilization,mimicking indolent subtypes.Theoretical analyses were rigorously proven,and numerical simulations closely fit clinical data.The framework’s clinical utility is demonstrated through an interactive graphics user interface(GUI)that integrates real-time risk assessment with growth trajectory simulations.展开更多
For the purpose of investigating two complex networks' hybrid synchronization,a controller with fractional-order is provided.Regarding hybrid synchronization which includes the outer synchronization and inner sync...For the purpose of investigating two complex networks' hybrid synchronization,a controller with fractional-order is provided.Regarding hybrid synchronization which includes the outer synchronization and inner synchronization,some hybrid synchronization's sufficient conditions according to the Lyapunov stability theorem and the LaSalle invariance principle are proposed.Theoretical analysis suggests that,only when the state of driving-response networks is outer synchronization and each network is in inner synchronization,two coupled networks' hybrid synchronization under some suitable conditions could be reached.Finally,theoretical results are illustrated and validated with the given numerical simulations.展开更多
Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valu...Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.展开更多
Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link....Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.展开更多
基金supported by the"Chunhui Plan"Cooperative Research for Ministry of Education(Z2016133)the Open Research Fund of Key Laboratory of Automobile Engineering(Xihua University)+3 种基金Sichuan Province(szjj2016-017)the National Natural Science Foundation of China(51177137)the Scientific Research Foundation of the Education Department of Sichuan Province(16ZB0163)the China Scholarship Council
文摘This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive strategies are designed to tune all or only a small fraction of the coupling gains respectively.By constructing quadratic Lyapunov functions and utilizing fractional inequality techniques,Mittag-Leffler function,and Laplace transform,two sufficient conditions are derived for reaching network synchronization by using the proposed adaptive laws.Finally,two numerical examples are given to verify the theoretical results.
基金supported by the National Natural Science Foundation of China (Grant No. 60873133)the National High Technology Research and Development Program of China (Grant No. 2007AA01Z478)
文摘Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for outer synchronization are derived analytically by applying the nonlinear control and the bidirectional coupling methods. The proposed synchronization method is applicable to almost all kinds of coupled fractional-order general complex dynamical networks. Neither a symmetric nor irreducible coupling configuration matrix is required. In addition, no constraint is imposed on the inner-coupling matrix. Numerical examples are also provided to demonstrate the validity of the presented synchronization scheme. Numeric evidence shows that both the feedback strength k and the fractional order a can be chosen appropriately to adjust the synchronization effect effectively.
文摘This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 〈 q 〈 1 is obtained based on the stability theory of the fractional-order system. The control method which combines active control with pinning control is then suggested to obtain the controllers. Furthermore, the adaptive strategy is applied to tune the control gains and coupling strength. Corresponding numerical simulations are performed to verify and illustrate the theoretical results.
基金support from the National Natural Science Foundation of China(No.52308316)the Scientific Research Foundation of Weifang University(Grant No.2024BS42)+2 种基金China Postdoctoral Science Foundation(No.2022M721885)the Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province(No.ZJRMG-2022-01)supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(NO.SKLGME023017).
文摘Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models.
基金Projected supported by the National Natural Science Foundation of China (Grant No. 11202155)the Fundamental Research Funds for the Central Universities, China (Grant No. K50511700001)
文摘In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62071496, 61901530, and 62061008)the Innovation Project of Graduate of Central South University (Grant No. 2022zzts0681)。
文摘A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has different numbers of equilibria for different ranges of parameters. The dynamics of the proposed system is investigated by means of phase portraits, Lyapunov exponents, bifurcation diagrams, and basins of attraction. The results show abundant dynamical characteristics. Particularly, the phenomena of extreme multistability as well as hidden attractors are discovered. In addition, the complex generalized projective synchronization is implemented between two fractional-order hyperchaotic complex systems with different fractional orders. Based on the fractional Lyapunov stability theorem, the synchronization controllers are designed, and the theoretical results are verified and demonstrated by numerical simulations. It lays the foundation for practical applications of the proposed system.
基金supported by the Scientific Research Foundation of the National Natural Science Foundation-Outstanding Youth Foundation(No.51622906)National Natural Science Foundation of China (No.51479173)+4 种基金Fundamental Research Funds for the Central Universities (201304030577)Scientific Research Funds of Northwest A&F University (2013BSJJ095)the Scientific Research Foundation for Water Engineering in Shaanxi Province (2013slkj-12)the Science Fund for Excellent Young Scholars from Northwest A&F University (Z109021515)the Shaanxi Nova Program (2016KJXX-55)
文摘This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-turbine governing system with complex penstocks is built from an engineering application perspective. This model is described by state-space equations and is composed of the Francis hydro-turbine model, the fractional-order complex penstocks model, the third-order generator model, and the hydraulic speed governing system model. Based on stability theory for a fractional-order nonlinear system, this study discovers a basic law of the bifurcation points of the above system with a change in the fractional-order a. Secondly, the stable region of the governing system is investigated in detail,and nonlinear dynamical behaviors of the system are identified and studied exhaustively via bifurcation diagrams, time waveforms, phase orbits, Poincare maps, power spectrums and spectrograms. Results of these numerical experiments provide a theoretical reference for further studies of the stability of hydropower stations.
文摘The complex derivative D^α±jβ, with α, β ∈ R+ is a generalization of the concept of integer derivative, where α = 1,β = 0. Fractional-order electric elements and circuits are becoming more and more attractive. In this paper, the complexorder electric elements concept is proposed for the first time, and the complex-order elements are modeled and analyzed.Some interesting phenomena are found that the real part of the order affects the phase of output signal, and the imaginary part affects the amplitude for both the complex-order capacitor and complex-order memristor. More interesting is that the complex-order capacitor can do well at the time of fitting electrochemistry impedance spectra. The complex-order memristor is also analyzed. The area inside the hysteresis loops increases with the increasing of the imaginary part of the order and decreases with the increasing of the real part. Some complex case of complex-order memristors hysteresis loops are analyzed at last, whose loop has touching points beyond the origin of the coordinate system.
基金Project supported by the National Natural Science Foundation of China(No.12172169)。
文摘In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli piezoelectric beam are defined by a frame-invariant and dimensionally consistent Riesz-Caputo fractional-order derivatives.The strain energy,the work done by external loads,and the kinetic energy based on the fractional-order kinematic model are derived and expressed in explicit forms.The boundary conditions for the nonlocal Euler-Bernoulli beam are derived through variational principles.Furthermore,a finite element model for the fractional-order system is developed in order to obtain the numerical solutions to the integro-differential equations.The effects of the fractional order and the vibration order on the static bending and vibration responses of the Euler-Bernoulli piezoelectric beams are investigated numerically.The results from the present model are validated against the existing results in the literature,and it is demonstrated that they are theoretically consistent.Although this fractional finite element method(FEM)is presented in the context of a one-dimensional(1D)beam,it can be extended to higher dimensional fractional-order boundary value problems.
基金supported by Key Program of National Natural Science Foundation of China (No. 61533011)National Natural Science Foundation of China (Nos. 61273088 and 61603203)
文摘The aim of this paper is to study complex modified projective synchronization(CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate fractional-order systems and active control method, control laws are derived to achieve CMPS in three situations including fractional-order complex Lorenz system driving fractional-order complex Chen system, fractional-order real Rssler system driving fractional-order complex Chen system, and fractionalorder complex Lorenz system driving fractional-order real Lü system. Numerical simulations confirm the validity and feasibility of the analytical method.
基金supported by the Anhui Provincial Development and Reform Commission New Energy Vehicles and Intelligent Connected Automobile Industry Technology Innovation Project。
文摘We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.
文摘The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapunov stability theory,quantized controllers are designed to guarantee that FMCNs can achieve synchronization in a limited time with and without coupling delay,respectively.Then,appropriate parameter update laws are obtained to identify the uncertain parameters in FMCNs.Finally,numerical simulation examples are given to validate the correctness of the theoretical results.
基金supported by the Natural Science Foundation of Sichuan Province,China(Youth Science Foundation)(Grant No.2022NSFSC1952).
文摘The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.
基金supported in part by the National Natural Science Foundation of China(Grant no.61775198,62076222,61903342)Henan Province Science and technology research project(Grant no.222102210059,222102210266,212102310455)。
文摘In this paper,the problem of combination projection synchronization of fractional-order complex dynamic networks with time-varying delay couplings and external interferences is studied.Firstly,the definition of combination projection synchronization of fractional-order complex dynamic networks is given,and the synchronization problem of the drive-response systems is transformed into the stability problem of the error system.In addition,time-varying delays and disturbances are taken into consideration to make the network synchronization more practical and universal.Then,based on Lyapunov stability theory and fractional inequality theory,the adaptive controller is formulated to make the drive and response systems synchronization by the scaling factors.The controller is easier to realize because there is no time-delay term in the controller.At last,the corresponding simulation examples demonstrate the effectiveness of the proposed scheme.
基金supported by Key Projectof Natural Science Foundation of China(61833005)the Natural Science Foundation of Hebei Province of China(A2018203288)。
文摘This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback control based on discrete time state observations.In contrast to the existing works on integer-order derivative couplings,fractional derivative couplings are introduced into FCDNs.First,a useful lemma with respect to the relationship between the discrete time observations term and a continuous term is developed.Second,by utilizing an inequality technique and auxiliary functions,the rigorous global exponential synchronization analysis is given and synchronization criterions are achieved in terms of linear matrix inequalities(LMIs).Finally,two examples are provided to illustrate the correctness of the obtained results.
文摘Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales.On the Wisconsin Diagnostic Breast Cancer dataset,seven ML algorithms were evaluated,with deep neural networks(DNNs)achieving the highest accuracy(97.72%).Key morphological features(area,radius,texture,and concavity)were identified as top malignancy predictors,aligning with clinical intuition.Beyond static classification,we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression.The model revealed clinically interpretable patterns:lower fractional orders correlated with prolonged aggressive growth,while higher orders indicated rapid stabilization,mimicking indolent subtypes.Theoretical analyses were rigorously proven,and numerical simulations closely fit clinical data.The framework’s clinical utility is demonstrated through an interactive graphics user interface(GUI)that integrates real-time risk assessment with growth trajectory simulations.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201227)the Funding of China Scholarship Council,the Natural Science Foundation of Anhui Province(Grant No.1208085MF93)the 211 Innovation Team of Anhui University(Grant Nos.KJTD007A and KJTD001B)
文摘For the purpose of investigating two complex networks' hybrid synchronization,a controller with fractional-order is provided.Regarding hybrid synchronization which includes the outer synchronization and inner synchronization,some hybrid synchronization's sufficient conditions according to the Lyapunov stability theorem and the LaSalle invariance principle are proposed.Theoretical analysis suggests that,only when the state of driving-response networks is outer synchronization and each network is in inner synchronization,two coupled networks' hybrid synchronization under some suitable conditions could be reached.Finally,theoretical results are illustrated and validated with the given numerical simulations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62176189 and 62106181)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (Grant No. Y202002)。
文摘Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.
文摘Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.