期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Attention-relation network for mobile phone screen defect classification via a few samples 被引量:2
1
作者 Jiao Mao Guoliang Xu +1 位作者 Lijun He Jiangtao Luo 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1113-1120,共8页
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro... How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages. 展开更多
关键词 Mobile phone screen defects a few samples Relation network attention mechanism Dilated convolution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部