In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation pro...In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation properties were investigated, and the physical properties of Pebax/SAPO-34 MMMs were characterized by XRD and SEM. At low SAPO-34 content, it was homogeneously distributed in the Pebax ma- trix, and then precipitated and agglomerated at high SAPO-34 content. The crystallinity of Pebax phase in Pebax/SAPO-34 MMMs decreased initially and then rebounded as a result of phase separation. With the increase of transmembrane pressure difference, CO2 permeability was en- hanced due to the effect of pressure-induced plasticization. Owing to the happening of stratification, the CO2 permeability of Pebax/SAPO-34 MMMs (50 wt% SAPO-34) increased to 338 Barrer from 111 Barrer of pristine Pebax, while the selectivities of CO2/CH4 and CO2/N2 were almost unchanged. Compared with the pristine Pebax, the gas separation performances of Pebax/SAPO-34 MMMs were remarkably enhanced.展开更多
Carbon monoxide(CO)/N2 separation is of importance for current chemical industry.However, CO/N2 separation remains a challenge due to the similar molecular size and the small variance of volatility of CO and N2.In thi...Carbon monoxide(CO)/N2 separation is of importance for current chemical industry.However, CO/N2 separation remains a challenge due to the similar molecular size and the small variance of volatility of CO and N2.In this work, molecular sieve SAPO-34 was loaded with CuCl by monolayer dispersion method for the preparation of Cu(I) containing adsorbents.The resulted adsorbents were characterized via nitrogen adsorption/desorption at 77 K, X-ray fluorescence(XRF) and X-ray diffraction(XRD).The results indicated that CuCl was successful loaded into the molecular sieve and well-dispersed.CO and N2 single component adsorption isotherms were recorded under 298 K, 308 K and 318 K by using volumetric method.One of the CuCl-loaded SAPO-34 adsorbent exhibited a very high CO adsorption capacity of 1.84 mmol/g at 100 kPa,298 K and high CO/N2 selectivity.展开更多
SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measur...SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measured for selective catalytic reduction(SCR) of NO with NH3.The synthesized Cu-Ce co-doped products switch from cubic SAPO-34,to flower-like aggregated SAPO-5/34,hybrid crystal SAPO-5/34,and finally to spherical aggregated SAPO-34 with the increase of α-cellulose amount.The Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts with 0.75 mol ratios of C/P(Cu-Ce/SP-0.75)exhibit excellent NH_(3)-SCR activity with higher than 90% NOx conversion in the temperature range of 180-450℃,at WHSV of 20000 mL/(g·h).Furthermore,the catalyst displays outstanding sulfur resistance and NOX conversion maintains above 90% at 200-450℃ after adding 100 ppm of SO_(2).The characteristic results suggest that the high deNOX performance of Cu-Ce/SP-0.75 is due to the enhanced accessibility,abundant activity species,excellent redox property and high adsorptive and activated capacity for NH_(3).展开更多
基金supported by the National Science and Technology Planning Project(No.2011BAC08B00)the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A611)
文摘In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation properties were investigated, and the physical properties of Pebax/SAPO-34 MMMs were characterized by XRD and SEM. At low SAPO-34 content, it was homogeneously distributed in the Pebax ma- trix, and then precipitated and agglomerated at high SAPO-34 content. The crystallinity of Pebax phase in Pebax/SAPO-34 MMMs decreased initially and then rebounded as a result of phase separation. With the increase of transmembrane pressure difference, CO2 permeability was en- hanced due to the effect of pressure-induced plasticization. Owing to the happening of stratification, the CO2 permeability of Pebax/SAPO-34 MMMs (50 wt% SAPO-34) increased to 338 Barrer from 111 Barrer of pristine Pebax, while the selectivities of CO2/CH4 and CO2/N2 were almost unchanged. Compared with the pristine Pebax, the gas separation performances of Pebax/SAPO-34 MMMs were remarkably enhanced.
基金supported by the National Natural Science Foundation of China(No.21802136)
文摘Carbon monoxide(CO)/N2 separation is of importance for current chemical industry.However, CO/N2 separation remains a challenge due to the similar molecular size and the small variance of volatility of CO and N2.In this work, molecular sieve SAPO-34 was loaded with CuCl by monolayer dispersion method for the preparation of Cu(I) containing adsorbents.The resulted adsorbents were characterized via nitrogen adsorption/desorption at 77 K, X-ray fluorescence(XRF) and X-ray diffraction(XRD).The results indicated that CuCl was successful loaded into the molecular sieve and well-dispersed.CO and N2 single component adsorption isotherms were recorded under 298 K, 308 K and 318 K by using volumetric method.One of the CuCl-loaded SAPO-34 adsorbent exhibited a very high CO adsorption capacity of 1.84 mmol/g at 100 kPa,298 K and high CO/N2 selectivity.
基金supported by the National Natural Science Foundation of China (51708309)Natural Science Foundation of Heilongjiang Province+1 种基金China (QC2017065)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2018106)。
文摘SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measured for selective catalytic reduction(SCR) of NO with NH3.The synthesized Cu-Ce co-doped products switch from cubic SAPO-34,to flower-like aggregated SAPO-5/34,hybrid crystal SAPO-5/34,and finally to spherical aggregated SAPO-34 with the increase of α-cellulose amount.The Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts with 0.75 mol ratios of C/P(Cu-Ce/SP-0.75)exhibit excellent NH_(3)-SCR activity with higher than 90% NOx conversion in the temperature range of 180-450℃,at WHSV of 20000 mL/(g·h).Furthermore,the catalyst displays outstanding sulfur resistance and NOX conversion maintains above 90% at 200-450℃ after adding 100 ppm of SO_(2).The characteristic results suggest that the high deNOX performance of Cu-Ce/SP-0.75 is due to the enhanced accessibility,abundant activity species,excellent redox property and high adsorptive and activated capacity for NH_(3).