ZrCo alloy holds great promise for hydrogen isotope storage,yet its susceptibility to poisoning by impurity gases,especially CO,poses a challenge.This susceptibility arises due to the electron acceptor nature of the s...ZrCo alloy holds great promise for hydrogen isotope storage,yet its susceptibility to poisoning by impurity gases,especially CO,poses a challenge.This susceptibility arises due to the electron acceptor nature of the surface Co element and the formation of the d-πfeedback bond,thereby impeding the surface hydrogen dissociation.Accordingly,we propose a novel local activity modulation strategy,where substituent elements are sacrificed to protect the active Co sites for hydrogen dissociation.Considering CO absorption capacity,solid solubility,and hydrogen affinity,we selected V,Cr,and Mn as microalloying elements and successfully prepared the single-phase ZrCo_(0.97)(VCrMn)_(0.03)alloy.Compared to pristine ZrCo,ZrCo_(0.97)(VCrMn)_(0.03)demonstrates significantly enhanced poisoning resistance.Notably,the hydrogenation kinetics of ZrCo_(0.97)(VCrMn)_(0.03)is 2.4 times higher than that of ZrCo in 4 bar H_(2)+5000 ppm CO.Interestingly,the controllable in situ formation of the Co_(2)C phase shell structure during cycling further safeguards the surface reactivity of ZrCo_(0.97)(VCrMn)_(0.03).Consequently,its capacity retention ratio after 25 cycles has been improved to 74.5%from 55.3%of the ZrCo alloy.These findings suggest that micro-alloying engineering could be a promising strategy for surface activity modulation to enhance the anti-poisoning properties of hydrogen storage materials.展开更多
The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves cru...The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves crucial for commercially viable fusion technologies.ZrCo alloy is considered as a promising candidate for fast isotope handling.However,cycling degradation caused by hydrogen-induced disproportionation results in severe tritium trapping,thus impeding its practical application.Herein,an isostructural transition is successfully constructed with low hysterisis,ameliorated plateau flatness of pressure-composition isotherms and improved high-temperature durability for hydrogen trapping minimization.Specifically,the optimal Zr_(0.7)Hf_(0.15)Nb_(0.15)Co_(0.6)Cu_(0.15)Ni_(0.25) alloy adopts Hf-Nb and Cu-Ni as Zr and Co side doping elements,exhibiting substantial thermodynamic destabilization with nearly 90℃ reduction of delivery temperature,and significant kinetic promotion with a threefold lower energy barrier.More importantly,both hydrogen utilization and cycling retention of optimal alloy are increased by about twenty times compared with pristine alloy after 100 cycles at 500℃.Minimized disproportionation driving force from both isostructural transition and suppressed 8e hydrogen occupation realizes full potential of optimal alloy.This work demonstrates the effectiveness of combining isostructural transformation and high-temperature durability improvement to enhance the hydrogen utilization of ZrCo-based alloys and other hydrogen storage materials.展开更多
Zr1-xTixCo(x = 0, 0.1, 0.2, 0.3) alloys were prepared by arc-melting method and the effect of Ti substitution on hydrogen storage properties was studied systematically. Hydrogen desorption pressure-composition-tempera...Zr1-xTixCo(x = 0, 0.1, 0.2, 0.3) alloys were prepared by arc-melting method and the effect of Ti substitution on hydrogen storage properties was studied systematically. Hydrogen desorption pressure-composition-temperature(PCT) measurements were carried out using Sievert’s type volumetric apparatus for ZrCo(at 473 K, 573 K and 673 K) and Zr1-xTixCo alloys(at 673 K), respectively. Products after dehydrogenation were characterized by X-ray diffraction(XRD). In addition, the kinetics of Zr1-xTixCo hydride was investigated at 473 K and 673 K,respectively, under hydrogen pressure of 5 MPa. Results showed that Ti substitution for Zr did not change the crystal structure of ZrCo phase.With the increase of temperature from 473 K to 673 K, the extent of disproportionation for ZrCo alloy increased. With Ti content increasing at 673 K, the desorption equilibrium pressure of Zr1-xTixCo-H2 systems elevated and the disproportionation reaction of Zr1-xTixCo alloys was inhibited effectively. Ti substitution decreased the kinetics rate and the effective hydrogen storage capacity of Zr1-xTixCo alloys slightly.Generally speaking, it was found that Zr0.8Ti0.2Co alloy had better anti-disproportionation property with less decrease of effective hydrogen storage capacity which was beneficial to tritium application in the International Thermonuclear Experimental Reactor(ITER).展开更多
基金financially supported by the National Key Research and Development Program of China(2022YFE03170002)the National Natural Science Foundation of China(52071286,U203020852171223)。
文摘ZrCo alloy holds great promise for hydrogen isotope storage,yet its susceptibility to poisoning by impurity gases,especially CO,poses a challenge.This susceptibility arises due to the electron acceptor nature of the surface Co element and the formation of the d-πfeedback bond,thereby impeding the surface hydrogen dissociation.Accordingly,we propose a novel local activity modulation strategy,where substituent elements are sacrificed to protect the active Co sites for hydrogen dissociation.Considering CO absorption capacity,solid solubility,and hydrogen affinity,we selected V,Cr,and Mn as microalloying elements and successfully prepared the single-phase ZrCo_(0.97)(VCrMn)_(0.03)alloy.Compared to pristine ZrCo,ZrCo_(0.97)(VCrMn)_(0.03)demonstrates significantly enhanced poisoning resistance.Notably,the hydrogenation kinetics of ZrCo_(0.97)(VCrMn)_(0.03)is 2.4 times higher than that of ZrCo in 4 bar H_(2)+5000 ppm CO.Interestingly,the controllable in situ formation of the Co_(2)C phase shell structure during cycling further safeguards the surface reactivity of ZrCo_(0.97)(VCrMn)_(0.03).Consequently,its capacity retention ratio after 25 cycles has been improved to 74.5%from 55.3%of the ZrCo alloy.These findings suggest that micro-alloying engineering could be a promising strategy for surface activity modulation to enhance the anti-poisoning properties of hydrogen storage materials.
基金supports from the National Key Research and Development Program of China(2022YFE03170002)the National Natural Science Foundation of China(52071286 and U2030208).
文摘The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves crucial for commercially viable fusion technologies.ZrCo alloy is considered as a promising candidate for fast isotope handling.However,cycling degradation caused by hydrogen-induced disproportionation results in severe tritium trapping,thus impeding its practical application.Herein,an isostructural transition is successfully constructed with low hysterisis,ameliorated plateau flatness of pressure-composition isotherms and improved high-temperature durability for hydrogen trapping minimization.Specifically,the optimal Zr_(0.7)Hf_(0.15)Nb_(0.15)Co_(0.6)Cu_(0.15)Ni_(0.25) alloy adopts Hf-Nb and Cu-Ni as Zr and Co side doping elements,exhibiting substantial thermodynamic destabilization with nearly 90℃ reduction of delivery temperature,and significant kinetic promotion with a threefold lower energy barrier.More importantly,both hydrogen utilization and cycling retention of optimal alloy are increased by about twenty times compared with pristine alloy after 100 cycles at 500℃.Minimized disproportionation driving force from both isostructural transition and suppressed 8e hydrogen occupation realizes full potential of optimal alloy.This work demonstrates the effectiveness of combining isostructural transformation and high-temperature durability improvement to enhance the hydrogen utilization of ZrCo-based alloys and other hydrogen storage materials.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant No.2011GB111003)the National HighTech Research and Development Program of China(Grant No.2011AA03A408)
文摘Zr1-xTixCo(x = 0, 0.1, 0.2, 0.3) alloys were prepared by arc-melting method and the effect of Ti substitution on hydrogen storage properties was studied systematically. Hydrogen desorption pressure-composition-temperature(PCT) measurements were carried out using Sievert’s type volumetric apparatus for ZrCo(at 473 K, 573 K and 673 K) and Zr1-xTixCo alloys(at 673 K), respectively. Products after dehydrogenation were characterized by X-ray diffraction(XRD). In addition, the kinetics of Zr1-xTixCo hydride was investigated at 473 K and 673 K,respectively, under hydrogen pressure of 5 MPa. Results showed that Ti substitution for Zr did not change the crystal structure of ZrCo phase.With the increase of temperature from 473 K to 673 K, the extent of disproportionation for ZrCo alloy increased. With Ti content increasing at 673 K, the desorption equilibrium pressure of Zr1-xTixCo-H2 systems elevated and the disproportionation reaction of Zr1-xTixCo alloys was inhibited effectively. Ti substitution decreased the kinetics rate and the effective hydrogen storage capacity of Zr1-xTixCo alloys slightly.Generally speaking, it was found that Zr0.8Ti0.2Co alloy had better anti-disproportionation property with less decrease of effective hydrogen storage capacity which was beneficial to tritium application in the International Thermonuclear Experimental Reactor(ITER).