Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution...Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.展开更多
利用ASTER数据,基于The Environment for Visualizing Images(ENVI)ZOOM软件平台,采用面向对象的多尺度影像分割技术与规则创建相结合方法,提取了珠峰保护区核心区的灌丛植被类型。在对影像进行去阴影处理和各种辅助信息融合的基础上,使...利用ASTER数据,基于The Environment for Visualizing Images(ENVI)ZOOM软件平台,采用面向对象的多尺度影像分割技术与规则创建相结合方法,提取了珠峰保护区核心区的灌丛植被类型。在对影像进行去阴影处理和各种辅助信息融合的基础上,使用Feature Extraction模块对影像进行分割,基于分割对象的高程、NDVI、纹理和光谱信息创建了适合研究区的灌丛提取规则。研究表明:该分类方法不仅能够克服传统基于像元分类方法中的"椒盐效应"问题,而且能够综合利用辅助信息(DEM、NDVI等)和地物本身的信息(光谱特征、纹理特征等),有效提高解译精度。以已有数据对分类结果进行了检验,分类精度达84.7%,分类结果较理想。展开更多
基金financial supports from National Natural Science Foundation of China(Grant Nos.U23A20368 and 62175006)Academic Excellence Foundation of BUAA for PhD Students.
文摘Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.