The preparation of Zn Se/Cd Se core-shell structure nanocomposites by using the re-prepared Zn Se microspheres as the template under the hydrothermal condition was presented. The influence of different mole ratios of ...The preparation of Zn Se/Cd Se core-shell structure nanocomposites by using the re-prepared Zn Se microspheres as the template under the hydrothermal condition was presented. The influence of different mole ratios of ZnS e to Cd(NO3)2 on the morphology and structure of the final product was investigated. And the performances of ZnS e/Cd Se core-shell structure nanocomposites were characterized by the means of X-ray diffraction(XRD) analyses, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and photoluminescence(PL) spectroscopy. The results indicate that the core-shell structure product can be prepared, when the mole ratio of Zn Se to Cd(NO3)2 is larger than 1:1; and the product will be ball solid structure, when the mole ratio of Zn Se to Cd(NO3)2 is equal to 1:1. The photo luminescence results show that Zn Se/Cd Se core-shell structures have high photo luminescence emission properties, and the product with mole ratio of Zn Se to Cd(NO3)2 being 1:0.5 has the best luminescence properties.展开更多
We report a facile aqueous phase synthesis for prepar-ing water-soluble inverted core/shell ZnSe/CdSe semiconductor nanocrystals. The samples were characterized by X-ray diffraction (XRD),transmission electron microsc...We report a facile aqueous phase synthesis for prepar-ing water-soluble inverted core/shell ZnSe/CdSe semiconductor nanocrystals. The samples were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),and their optical properties were investigated by using UV-vis-NIR spectropho-tometer and fluorescence spectrophotometer. The results indicate that the synthesized ZnSe/CdSe nanocrystals are inverted core/shell structure with diameter of about 5 nm. Furthermore,their absorption band-edge is red-shifted with the growth of CdSe shell; correspondingly,their emission wavelength can be tuned from 460 nm to 604 nm.展开更多
High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich...High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich surface was formed. By injecting different amounts of Zn precursor, the core-shell nanocrystals demonstrated by the emission spectra were formed. The obtained Zn-doped CdSe nanocrystals exhibit a photoluminescence efficiency from 30% to 85%, which is comparable to those for the reported CdSe/ZnS, CdSe/CdS in the literature. In particular, a shell ZnSe layer with different thicknesses of ZnSe can be formed in this experiment by only changing the amount of Zn precursor added, which is simple and effective.展开更多
The electronic structures of (CdSe)n/(ZnSe)m strained-lager soperfattice (SLS) were investigated by the recursion method in the tight-bindiop opproximation. The total,local, and partial density of states were calculat...The electronic structures of (CdSe)n/(ZnSe)m strained-lager soperfattice (SLS) were investigated by the recursion method in the tight-bindiop opproximation. The total,local, and partial density of states were calculated for n=1, m=5.The total density of states (TDOS) for bulk CdSe, ZnSe and n=1, 3, m=1, 3, 5, for SLS were investigated.Fermi energy, the band gap, the valence of an atom, and the ionization potential and the electron affinity were discassed.展开更多
Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfull...Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle Cd Se nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of78.824% was achieved by vesicle Cd Se, which exhibited an increase of 31.779% compared to granular Cd Se. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle Cd Se nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle Cd Se nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h+and UO2^-are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle Cd Se nano-semiconductor had high efficiency and stability.展开更多
This work mainly investigated the influences of some factors, such as, synthesis methods, precursor alteraatives, and vacuum heat-treating process, etc, on the fluorescent characteristics of the semiconductor quantum ...This work mainly investigated the influences of some factors, such as, synthesis methods, precursor alteraatives, and vacuum heat-treating process, etc, on the fluorescent characteristics of the semiconductor quantum dots synthesized by aqueous phase. The research results indicate that the fluorescent characteristic of water- solution sample prepared from Na2 SO3 precursor was sensitive to water bath heating time, and specially, its photohuninescence spectrum shows the unique phenomenon of double excitation and emission peaks. Meanwhile, the fluorescent characteristic of water- solution sample prepared from NaBH4 precursor is slightly influenced by water bath heating time, and the sugface of CdSe quantum dots could be passivated by the excessive amount of NaBH4 precursor, which results in the effective decrease of surface traps and great enhancement of quantum yield. Furthermore, the fluorescent emission peaks of samples could be sharpened by vacuum heat-treating process, with its spectral full width at half of maximum (FWHM) around 30- 40 run, so the emission peaks become redshifi, of which the intensity greatly increases.展开更多
The kinetics of interracial processes of CdSe thin film electrode before and after sur- face modification of 1,1'-di linolene ferrocenyl L-B films have been studied in K_4Fe(CN)_6 solution by Intensity Modulated P...The kinetics of interracial processes of CdSe thin film electrode before and after sur- face modification of 1,1'-di linolene ferrocenyl L-B films have been studied in K_4Fe(CN)_6 solution by Intensity Modulated Photocurrent Spectroscopy(IMPS).Potential dependence of surface state relaxation time(T_s),steady state photocurrent(I_s),collection coefficient of minority carriers(G_o), rate constant of photocorrosion(K_(cr)),and density of surface state(N_(ss))were determined in terms of frequency response analysis of IMPS plots.展开更多
基金Project(13JJ1005)supported by the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China
文摘The preparation of Zn Se/Cd Se core-shell structure nanocomposites by using the re-prepared Zn Se microspheres as the template under the hydrothermal condition was presented. The influence of different mole ratios of ZnS e to Cd(NO3)2 on the morphology and structure of the final product was investigated. And the performances of ZnS e/Cd Se core-shell structure nanocomposites were characterized by the means of X-ray diffraction(XRD) analyses, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and photoluminescence(PL) spectroscopy. The results indicate that the core-shell structure product can be prepared, when the mole ratio of Zn Se to Cd(NO3)2 is larger than 1:1; and the product will be ball solid structure, when the mole ratio of Zn Se to Cd(NO3)2 is equal to 1:1. The photo luminescence results show that Zn Se/Cd Se core-shell structures have high photo luminescence emission properties, and the product with mole ratio of Zn Se to Cd(NO3)2 being 1:0.5 has the best luminescence properties.
基金Supported by the National Natural Science Foundation of China (10874134)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060486031)
文摘We report a facile aqueous phase synthesis for prepar-ing water-soluble inverted core/shell ZnSe/CdSe semiconductor nanocrystals. The samples were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),and their optical properties were investigated by using UV-vis-NIR spectropho-tometer and fluorescence spectrophotometer. The results indicate that the synthesized ZnSe/CdSe nanocrystals are inverted core/shell structure with diameter of about 5 nm. Furthermore,their absorption band-edge is red-shifted with the growth of CdSe shell; correspondingly,their emission wavelength can be tuned from 460 nm to 604 nm.
文摘High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich surface was formed. By injecting different amounts of Zn precursor, the core-shell nanocrystals demonstrated by the emission spectra were formed. The obtained Zn-doped CdSe nanocrystals exhibit a photoluminescence efficiency from 30% to 85%, which is comparable to those for the reported CdSe/ZnS, CdSe/CdS in the literature. In particular, a shell ZnSe layer with different thicknesses of ZnSe can be formed in this experiment by only changing the amount of Zn precursor added, which is simple and effective.
文摘The electronic structures of (CdSe)n/(ZnSe)m strained-lager soperfattice (SLS) were investigated by the recursion method in the tight-bindiop opproximation. The total,local, and partial density of states were calculated for n=1, m=5.The total density of states (TDOS) for bulk CdSe, ZnSe and n=1, 3, m=1, 3, 5, for SLS were investigated.Fermi energy, the band gap, the valence of an atom, and the ionization potential and the electron affinity were discassed.
基金supported by the National Natural Science Foundation of China (Nos. 21546013, U1510126, 21407064)the Natural Science Foundation of Jiangsu Province (No. BK20131259)+3 种基金the China Postdoctoral Science Foundation (No. 2015 M571684)the Jiangsu Postdoctoral Science Foundation (No. 1501102B)the Innovation Programs Foundation of Jiangsu Province (No. KYLX15_1089)the Open Research Fund of State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (No. 12KF09)
文摘Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle Cd Se nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of78.824% was achieved by vesicle Cd Se, which exhibited an increase of 31.779% compared to granular Cd Se. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle Cd Se nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle Cd Se nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h+and UO2^-are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle Cd Se nano-semiconductor had high efficiency and stability.
文摘This work mainly investigated the influences of some factors, such as, synthesis methods, precursor alteraatives, and vacuum heat-treating process, etc, on the fluorescent characteristics of the semiconductor quantum dots synthesized by aqueous phase. The research results indicate that the fluorescent characteristic of water- solution sample prepared from Na2 SO3 precursor was sensitive to water bath heating time, and specially, its photohuninescence spectrum shows the unique phenomenon of double excitation and emission peaks. Meanwhile, the fluorescent characteristic of water- solution sample prepared from NaBH4 precursor is slightly influenced by water bath heating time, and the sugface of CdSe quantum dots could be passivated by the excessive amount of NaBH4 precursor, which results in the effective decrease of surface traps and great enhancement of quantum yield. Furthermore, the fluorescent emission peaks of samples could be sharpened by vacuum heat-treating process, with its spectral full width at half of maximum (FWHM) around 30- 40 run, so the emission peaks become redshifi, of which the intensity greatly increases.
基金This work was supported by the National Natural Science Foundation of China
文摘The kinetics of interracial processes of CdSe thin film electrode before and after sur- face modification of 1,1'-di linolene ferrocenyl L-B films have been studied in K_4Fe(CN)_6 solution by Intensity Modulated Photocurrent Spectroscopy(IMPS).Potential dependence of surface state relaxation time(T_s),steady state photocurrent(I_s),collection coefficient of minority carriers(G_o), rate constant of photocorrosion(K_(cr)),and density of surface state(N_(ss))were determined in terms of frequency response analysis of IMPS plots.