An Fe-doped bimetallic ZnFe-MOF precursor was prepared using a microchannel reactor,and carbonization was conducted to synthesize a bimetallic catalyst(ZnFe-NC).The fundamental reason for the efficient activity of the...An Fe-doped bimetallic ZnFe-MOF precursor was prepared using a microchannel reactor,and carbonization was conducted to synthesize a bimetallic catalyst(ZnFe-NC).The fundamental reason for the efficient activity of the catalyst was determined through an in-depth analysis of its structural composition and close correlation with the oxygen reduction reaction(ORR).The ZnFe-NC catalyst maintains a stable truncated rhombohedral morphology and a rich microporous structure,exhibiting excellent ORR activity and long-term stability.The experimental results show that compared with the reversible hydrogen electrode,it has a high half-wave potential of 0.902 V(E_(1/2)),retains 94%of activity after 35,000 s of stability testing,and exhibits significant methanol tolerance in alkaline media.Density functional theory calculations confirm the synergistic effect between the Zn and Fe sites.Furthermore,the results indicate that the interaction between ZnFe-N_(6)coordination structures reduces the reaction energy barrier,thus enhancing intermediate adsorption during the ORR.展开更多
A spinel-type oxides ZnFe2O4 photocatalysts were prepared by citric acid complex method,and characterized with XRD,TG-DTA,FT-IR,TEM techniques.The photocatalytic activities were investigated by the degradation of C3H2...A spinel-type oxides ZnFe2O4 photocatalysts were prepared by citric acid complex method,and characterized with XRD,TG-DTA,FT-IR,TEM techniques.The photocatalytic activities were investigated by the degradation of C3H22N6O6S2Na2 by artificial visible Light.The results show that the photocatalytic activity of ZnFe2O4 is stable,under experimental conditions,the degradation rate of C3H22N6O6S2 is over 90% in 60min.展开更多
基金financially supported by Xinjiang Science and Technology Program(No.2023TSYCCX0118)Bingtuan Science and Technology Program(No.2023AB033)。
文摘An Fe-doped bimetallic ZnFe-MOF precursor was prepared using a microchannel reactor,and carbonization was conducted to synthesize a bimetallic catalyst(ZnFe-NC).The fundamental reason for the efficient activity of the catalyst was determined through an in-depth analysis of its structural composition and close correlation with the oxygen reduction reaction(ORR).The ZnFe-NC catalyst maintains a stable truncated rhombohedral morphology and a rich microporous structure,exhibiting excellent ORR activity and long-term stability.The experimental results show that compared with the reversible hydrogen electrode,it has a high half-wave potential of 0.902 V(E_(1/2)),retains 94%of activity after 35,000 s of stability testing,and exhibits significant methanol tolerance in alkaline media.Density functional theory calculations confirm the synergistic effect between the Zn and Fe sites.Furthermore,the results indicate that the interaction between ZnFe-N_(6)coordination structures reduces the reaction energy barrier,thus enhancing intermediate adsorption during the ORR.
文摘A spinel-type oxides ZnFe2O4 photocatalysts were prepared by citric acid complex method,and characterized with XRD,TG-DTA,FT-IR,TEM techniques.The photocatalytic activities were investigated by the degradation of C3H22N6O6S2Na2 by artificial visible Light.The results show that the photocatalytic activity of ZnFe2O4 is stable,under experimental conditions,the degradation rate of C3H22N6O6S2 is over 90% in 60min.