Alkaline zinc manganese dioxide(Zn–MnO2)batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and costeffect...Alkaline zinc manganese dioxide(Zn–MnO2)batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and costeffective process for synthesizing Mn3O4/carbon nanotube(CNT) nanocomposites from recycled alkaline Zn–MnO2 batteries is presented. Manganese oxide was recovered from spent Zn–MnO2 battery cathodes. The Mn3O4/CNT nanocomposites were produced by ball milling the recovered manganese oxide in a commercial multi-wall carbon nanotubes(MWCNTs) solution. Scanning electron microscopy(SEM) analysis demonstrates that the nanocomposite has a unique three-dimensional(3D) bird nest structure. Mn3O4 nanoparticles are homogeneously distributed on MWCNT framework. Mn3O4/CNT nanocomposites were evaluated as an anode material for lithium-ion batteries, exhibiting a highly reversible specific capacitance of -580 mA h·g^-1 after 100 cycles. Moreover, Mn3O4/CNT nanocomposite also shows a fairly positive onset potential of -0.15 V and quite high oxygen reducibility when considered as an electrocatalyst for oxygen reduction reaction.展开更多
To improve the performance of Ni-Zn ferrites for power field use,the influence of MnO2 additive on the properties of Ni-Zn ferrites was investigated by the conventional powder metallurgy.The results show that MnO2 doe...To improve the performance of Ni-Zn ferrites for power field use,the influence of MnO2 additive on the properties of Ni-Zn ferrites was investigated by the conventional powder metallurgy.The results show that MnO2 does not form a visible second phase in the doping mass fraction range of(0-2.0%).The average grain size,sintering density and real permeability gradually decrease with the increase of the MnO2 content.And the DC resistivity continuously increases with the increase of MnO2 content.The saturation magnetization(magnetic moment in unit mass) first increases slightly when mass fraction of MnO2 is less than 0.4% MnO2,and then gradually decreases with increasing the MnO2 mass fraction due to the exchange interaction of the cations.When the excitation frequency is less than 1 MHz,the power loss(Pcv) continuously increases with increasing the MnO2 content due to the decrease of average grain size.However,when the excitation frequency exceeds 1 MHz,eddy current loss gradually becomes the predominant contribution to Pcv.And the sample with a higher resistivity favors a lower Pcv,except for the sample with 2.0% MnO2.The sample without additive has the best Pcv when worked at frequencies less than 1 MHz;and the sample with 1.6% MnO2 additive has the best Pcv when worked at frequencies higher than 1 MHz.展开更多
In this study electrochemical performance of Al and some of its alloys (Al-Zn, Al-rvlg and Al-rvln) anodes vs MnO2 cathode were carried out in alkaline solution. The results show that the Al-Zn alloy anode has the b...In this study electrochemical performance of Al and some of its alloys (Al-Zn, Al-rvlg and Al-rvln) anodes vs MnO2 cathode were carried out in alkaline solution. The results show that the Al-Zn alloy anode has the best cell capacity among the other alloys. Cell capacity values go in the order Al-Zn〉Al-Mg〉Al〉Al-Mn. This result is probably related to the nature of passive films formed on the surface of the alloys which examined by scanning electron microscopy (SEM). SEM morphologies of Al and its alloys showed coarse grains of passive films formed on the surface of these anode materials while Al-Mn morphology shows a needle-like structure. Electrolytic manganese dioxide (EMD) produced by electrodepositing on platinum anode from liquor resulting from reduction of low grade pyrolusite ore (β-MnO2) by sulfur slag was characterized as cathode in alkaline Zn-MnO2 batteries. Ore produced sample (EMD1) was performed well in comparison with EMD standard (EMD2) (commercial battery grade electrolytic manganese dioxide, TOSOH-Hellas GH-S). SEM morphology of Zn anode after cell reaction was carried out and showed that Zn anode has fine grains of passive film on its surface.展开更多
A two-dimensional mathematical model based on the macrohomogeneous theory of porous electrodes was developed for a cylindrical Zn-MnO2 alkaline cell. The model was applied to understand the effect of the length of the...A two-dimensional mathematical model based on the macrohomogeneous theory of porous electrodes was developed for a cylindrical Zn-MnO2 alkaline cell. The model was applied to understand the effect of the length of the anode current collector on the cell performance. Results are presented for the continuous discharge at a high rate of 1A and a moderate rate of 0.2A for a AA-sized cell. With a typical length of an anode current collector at about 70%of the cell height, the analysis showed that an increase in the length of the anode current collector would benefit the lower rate of discharge more than the higher rate of discharge.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21671096 and 21603094)the Shenzhen Peacock Plan(No.KQCX2014052215 0815065)+1 种基金the Natural Science Foundation of Shenzhen(Nos.JCYJ20150630145302231 and JCYJ20150331101823677)the Science and Technology Innovation Foundation for the Undergraduates of South University of Science and Technology of China(Nos.2016S10,2016S20,2015x19 and 2015x12)
文摘Alkaline zinc manganese dioxide(Zn–MnO2)batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and costeffective process for synthesizing Mn3O4/carbon nanotube(CNT) nanocomposites from recycled alkaline Zn–MnO2 batteries is presented. Manganese oxide was recovered from spent Zn–MnO2 battery cathodes. The Mn3O4/CNT nanocomposites were produced by ball milling the recovered manganese oxide in a commercial multi-wall carbon nanotubes(MWCNTs) solution. Scanning electron microscopy(SEM) analysis demonstrates that the nanocomposite has a unique three-dimensional(3D) bird nest structure. Mn3O4 nanoparticles are homogeneously distributed on MWCNT framework. Mn3O4/CNT nanocomposites were evaluated as an anode material for lithium-ion batteries, exhibiting a highly reversible specific capacitance of -580 mA h·g^-1 after 100 cycles. Moreover, Mn3O4/CNT nanocomposite also shows a fairly positive onset potential of -0.15 V and quite high oxygen reducibility when considered as an electrocatalyst for oxygen reduction reaction.
基金Projects(50702011,60721001)supported by the National Natural Science Foundation of China
文摘To improve the performance of Ni-Zn ferrites for power field use,the influence of MnO2 additive on the properties of Ni-Zn ferrites was investigated by the conventional powder metallurgy.The results show that MnO2 does not form a visible second phase in the doping mass fraction range of(0-2.0%).The average grain size,sintering density and real permeability gradually decrease with the increase of the MnO2 content.And the DC resistivity continuously increases with the increase of MnO2 content.The saturation magnetization(magnetic moment in unit mass) first increases slightly when mass fraction of MnO2 is less than 0.4% MnO2,and then gradually decreases with increasing the MnO2 mass fraction due to the exchange interaction of the cations.When the excitation frequency is less than 1 MHz,the power loss(Pcv) continuously increases with increasing the MnO2 content due to the decrease of average grain size.However,when the excitation frequency exceeds 1 MHz,eddy current loss gradually becomes the predominant contribution to Pcv.And the sample with a higher resistivity favors a lower Pcv,except for the sample with 2.0% MnO2.The sample without additive has the best Pcv when worked at frequencies less than 1 MHz;and the sample with 1.6% MnO2 additive has the best Pcv when worked at frequencies higher than 1 MHz.
文摘In this study electrochemical performance of Al and some of its alloys (Al-Zn, Al-rvlg and Al-rvln) anodes vs MnO2 cathode were carried out in alkaline solution. The results show that the Al-Zn alloy anode has the best cell capacity among the other alloys. Cell capacity values go in the order Al-Zn〉Al-Mg〉Al〉Al-Mn. This result is probably related to the nature of passive films formed on the surface of the alloys which examined by scanning electron microscopy (SEM). SEM morphologies of Al and its alloys showed coarse grains of passive films formed on the surface of these anode materials while Al-Mn morphology shows a needle-like structure. Electrolytic manganese dioxide (EMD) produced by electrodepositing on platinum anode from liquor resulting from reduction of low grade pyrolusite ore (β-MnO2) by sulfur slag was characterized as cathode in alkaline Zn-MnO2 batteries. Ore produced sample (EMD1) was performed well in comparison with EMD standard (EMD2) (commercial battery grade electrolytic manganese dioxide, TOSOH-Hellas GH-S). SEM morphology of Zn anode after cell reaction was carried out and showed that Zn anode has fine grains of passive film on its surface.
文摘A two-dimensional mathematical model based on the macrohomogeneous theory of porous electrodes was developed for a cylindrical Zn-MnO2 alkaline cell. The model was applied to understand the effect of the length of the anode current collector on the cell performance. Results are presented for the continuous discharge at a high rate of 1A and a moderate rate of 0.2A for a AA-sized cell. With a typical length of an anode current collector at about 70%of the cell height, the analysis showed that an increase in the length of the anode current collector would benefit the lower rate of discharge more than the higher rate of discharge.