期刊文献+
共找到140篇文章
< 1 2 7 >
每页显示 20 50 100
Synchronous regulation of V_(2)O_(5) cathode and Zn anode using sodium gluconate as an additive for long-life aqueous zinc-ion batteries 被引量:1
1
作者 Rongkun Sun Dan Luo +5 位作者 Hongyang Zhou Zhaolong Zhang Yinuo Gao Siyuan Ma Zhi Li Xiaohong Kang 《Journal of Energy Chemistry》 2025年第4期703-713,共11页
Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hamp... Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hampered by the instability of both the anode-electrolyte interface and the cathode-electrolyte interface.The use of sodium gluconate(SG),an organic sodium salt with multiple hydroxyl groups,as an electrolyte additive is suggested.Experimental and theoretical analyses demonstrate that Na^(+)from SG can intercalate and deintercalate within the associated V_(2)O_(5) cathode during in situ electrochemical processes.This action supports the layered structure of V_(2)O_(5),prevents structural collapse and phase transitions,and enhances Zn^(2+)diffusion kinetics.Additionally,the gluconate anion disrupts the original Zn^(2+)solvation structure,mitigates water-induced side reactions,and suppresses Zn dendrite growth.The synchronous regulation of both the V_(2)O_(5) cathode and Zn anode by the SG additive leads to considerable performance improvements.Zn‖Zn symmetric batteries demonstrate a cycle life exceeding 2800 h at 0.5 mA cm^(-2)and 1 mAh cm^(-2).In Zn‖V_(2)O_(5) full batteries,a high specific capacity of 288.92 mAh g^(-1)and capacity retention of 82.29%are maintained over 1000 cycles at a current density of 2 A g^(-1).This multifunctional additive strategy offers a new pathway for the practical application of AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries Sodium gluconate Vanadium oxides zn anode Cycling stability High specific capacity
在线阅读 下载PDF
Conductive and zincophilic textile-stabilized Zn anode for flexible Zn-I_(2) battery
2
作者 Bo Xiang Jinxiang Peng +5 位作者 Qi Lai Pengcheng Wang Yangfeng Cui Mingjie Wu Yunhai Zhu Yingkui Yang 《Materials Reports(Energy)》 2025年第4期109-117,共9页
Aqueous Zinc-metal batteries(AZBs)hold great promise for energy storage applications,yet their practical deployment is hindered by challenges such as dendrite formation and parasitic side reactions at the Zn anode.Her... Aqueous Zinc-metal batteries(AZBs)hold great promise for energy storage applications,yet their practical deployment is hindered by challenges such as dendrite formation and parasitic side reactions at the Zn anode.Herein,we developed a three-dimensional Cu-coated flexible host via an electroless plating strategy on cotton cloth(Cu@CT).This design effectively homogenizes the local current density,spatially regulates Zn-ion flux,and accommodates substantial volume changes during cycling.Additionally,the zincophilic Cu coating facilitates Zn nucleation and deposition by forming Cu-Zn alloys,which reduce the Zn nucleation overpotential and promote uniform Zn plating.As a result,the Cu@CT based anode exhibits highly reversible Zn plating/stripping behavior with an average Coulombic efficiency of 99.58%over 800 cycles,accompanied by low polarization and dendrite-free behavior.Moreover,the Zn-I_(2) full cell demonstrates excellent rate capability,delivering a discharge capacity of 114 mA h g^(-1) at 10 A g^(-1),along with stable long-term cycling performance over 950 cycles.The electroless plating strategy may represent a promising pathway for advancing high-performance AZBs. 展开更多
关键词 Electroless plating Textile-based electrodes Three-dimensional structure zn anode zn-iodine batteries Flexible batteries
在线阅读 下载PDF
Microenvironment regulation of anode-electrolyte interface enables highly stable Zn anodes
3
作者 Lin Peng Xincheng Liang +6 位作者 Zelong Sun Xingfa Chen Dexin Meng Renshu Huang Qian Liu Huan Wen Shibin Yin 《Chinese Journal of Structural Chemistry》 2025年第4期26-36,共11页
H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an elec... H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an electrolyte additive to solve the above issues by three aspects:Firstly,Met is anchored on Zn anode by amino/methylthio groups to form a H_(2)O-poor AEI,thus increasing the overpotential of hydrogen evolution reaction(HER);secondly,Met serves as a pH buffer to neutralize the HER generated OH-,thereby preventing the formation of by-products(e.g.Zn_(4)SO_(4)(OH)_(6)·xH_(2)O);thirdly,Zn^(2+) could be captured by carboxyl group of the anchored Met through electrostatic interaction,which promotes the dense and flat Zn deposition.Consequently,the Zn||Zn symmetric cell obtains a long cycle life of 3200 h at 1.0 mA cm^(-2),1.0 mAh cm^(-2),and 1400 h at 5.0 mA cm^(-2),5.0 mAh cm^(-2).Moreover,Zn||VO_(2) full cell exhibits a capacity retention of 91.0%after operating for 7000 cycles at 5.0 A g^(-1).This study offers a novel strategy for modulating the interface microenvironment of AEI via integrating the molecular adsorption,pH buffer,and Zn^(2+) capture strategies to design advanced industrial-oriented batteries. 展开更多
关键词 Aqueous zinc ion batteries zn anodes Electrolyte additives anode-electrolyte interface Capture effect pH buffer
原文传递
Toward long-life Zn anode using highly polar electrolyte additives
4
作者 Nengbin Cai Hongming Chen +3 位作者 Busheng Zhang Zijing Liu Xinbo He Dan Zhou 《Journal of Energy Chemistry》 2025年第2期651-660,I0014,共11页
Unstable Zn interface caused by rampant dendrite growth and parasitic side reactions always hinders the practical application of aqueous zinc metal batteries(AZMBs),Herein,tyrosine(Tyr)with high molecular polarity was... Unstable Zn interface caused by rampant dendrite growth and parasitic side reactions always hinders the practical application of aqueous zinc metal batteries(AZMBs),Herein,tyrosine(Tyr)with high molecular polarity was introduced into aqueous electrolyte to modulate the interfacial electrochemistry of Zn anode.In AZMBs,the positively charged side of Tyr can be well adsorbed on the surface of Zn anode to form a water-poor layer,and the exposed carboxylate side can be easily coordinated with Zn^(2+),favoring inducing uniform plating of Zn^(2+)and inhibiting the occurrence of water-induced side reactions.These in turn enable the achievement of highly stable Zn anode.Accordingly,the Zn anodes achieve outstanding cyclic stability(3000 h at 2 mA cm^(-2),2 mA h cm^(-2)and 1300 h at 5 mA cm^(-2),5 mA h cm^(-2)),high average Coulombic efficiency(99.4%over 3200 cycles),and high depth of discharge(80%for 500 h).Besides,the assembled Zn‖NaV_(3)O_(8)·1.5H_(2)O full cells deliver remarkable capacity retention and ultra-long lifetime(61.8%over 6650 cycles at 5 A g^(-1))and enhanced rate capability(169 mA h g^(-1)at 5 A g^(-1)).The work may promote the design and deep understanding of electrolyte additives with high molecular polarity for high-performance AZMBs. 展开更多
关键词 AZMBs Electrolyte additives Tyr Interfacial electrochemistry Highly stable zn anode
在线阅读 下载PDF
Concentrated perchlorate-based electrolyte facilitates Zn anode-compatible in situ solid electrolyte interphase
5
作者 Yin-Sheng Li Li-Shan Geng +5 位作者 Bo-Mian Zhang Zi-He Wei Hao Fan Jing-Hao Li Wen-Cong Feng Liang Zhou 《Rare Metals》 2025年第2期950-960,共11页
Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic react... Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic reactions in zinc perchlorate electrolytes,which is caused by the fast corrosive kinetics at room temperature.Herein,a concentrated perchlorate-based electrolyte consisting of 4.0 M Zn(ClO_(4))_(2)and saturated NaClO_(4)solution is developed to achieve dendrite-free and stable AZIBs at room temperature.The ClO_(4)−participates in the primary solvation sheath of Zn^(2+),facilitating the in situ formation of Zn_(5)(OH)_(8)Cl_(2)·H_(2)O-rich solid electrolyte interphase(SEI)to suppress the corrosion effect of ClO_(4)^(−).The Zn anode protected by the SEI achieves stable Zn plating/stripping over 3000 h.Furthermore,the MnO_(2)||Zn full cells manifest a stable specific capacity of 200 mAh·g^(−1)at 28℃and 101 mAh·g^(−1)at−20℃.This work introduces a promising approach for boosting the room-temperature performance of perchlorate-based electrolytes for AZIBs. 展开更多
关键词 Concentrated perchlorate-based electrolytes Solvation sheath Solid electrolyte interphase Dendritefree zn anode Aqueous zinc-ion batteries
原文传递
Enhanced Zn plating and stripping behavior of the utilized fly ash-coated Zn anode for zinc-ion batteries
6
作者 Patteera Tanapornchinpong Cheng-Wu Yang +7 位作者 Ying-Hao Zhao Napat Kiatwisarnkij Kittima Lolupiman Saravanan Rajendran Yong-Peng Lei Xin-Yu Zhang Panyawat Wangyao Jia-Qian Qin 《Rare Metals》 2025年第7期4621-4630,共10页
Rechargeable aqueous Zn-ion batteries(ZIBs)have emerged as a promising new energy storage technology,characterized by their low cost,high safety,environmental friendliness,and the abundant availability of Zn resources... Rechargeable aqueous Zn-ion batteries(ZIBs)have emerged as a promising new energy storage technology,characterized by their low cost,high safety,environmental friendliness,and the abundant availability of Zn resources.However,several challenges remain with their use,such as zinc dendrite formation,corrosion,passivation,and hydrogen evolution reaction(HER)on the zinc anodesurface,leading to a short overall battery life.In this paper,a zinc anode-coating method with silica-fly ash composite(FAS)has been developed.This modified Zn anode(5FAS@Zn)demonstrates remarkable improvements in the performance and stability of ZIBs by effectively decreasing zinc nucleation overpotential and minimizing charge transfer resistance while facilitating stable Zn plating and stripping as well as achieving even zinc deposition.The remarkable cycling lifespan of the 5FAS@Znll5FAS@Zn symmetrical cell is 1800 h at 0.5 mA cm^(-2)and 1500 h at1 mA cm^(-2).The 5FAS@ZnllCu half-cell outperforms pure Zn batteries with a high and consistent Coulombic efficiency(CE)of 99.8%over 800 cycles at 1 mA cm^(-2).Furthermore,the full cell of 5FAS@ZnllV_(2)O_(5)exhibits notable improvements in cycling performance.This research provides a scalable and sustainable method to extend the life of zinc anodes and has significant implications for the large-scale deployment of zinc-ion batteries. 展开更多
关键词 zn-ion batteries(ZIBs) Fly ash(FA) zn anode protection Magnesiothermic reduction Surface coatings
原文传递
Realizing dendrite-free Zn anode using an efficient sulfone-based electrolyte additive for high-performance aqueous zinc-ion batteries
7
作者 Hongda Cui Wenxin Li +2 位作者 Hongming Chen Zijin Liu Dan Zhou 《Journal of Energy Chemistry》 2025年第10期455-465,共11页
Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by s... Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by side reactions and dendritic growth always severely worsens the long-term operation of AZIBs.Herein,a novel 3-cyclobutene sulfone(CS)additive was employed in the aqueous electrolyte to achieve a highly reversible Zn anode.The CS additive can offer strong electronegativity and high binding energy for the coordination with Zn^(2+),which enables its entry into the solvent sheath structure of Zn^(2+)and eliminates the free H_(2)O molecules from the solvated{Zn^(2+)-SO_(4)^(2-)-(H_(2)O)_(5)}.Thus,the occurrence of side reactions and dendritic growth can be effectively inhibited.Accordingly,the Zn anode achieves long cycle-life(1400 h at 1 m A cm^(-2),1 m Ah cm^(-2),and 400 h at 5 m A cm^(-2),5 m Ah cm^(-2))and high average coulombic efficiency(99.5% over 500 cycles at 10 m A cm^(-2),1 m Ah cm^(-2)).Besides,the assembled Zn||NH_(4)V_(4)O_(10)full cell suggests enhanced cycling reversibility(123.8 m Ah g^(-1)over 500 cycles at 2 A g^(-1),84.9 m Ah g^(-1)over 800 cycles at 5 A g^(-1))and improved rate capability(139.1 m Ah g^(-1)at 5 A g^(-1)).This work may exhibit the creative design and deep understanding of sulfone-based electrolyte additives for the achievement of high-performance AZIBs. 展开更多
关键词 AZIBs 3-Cyclobutene sulfone Electrolyte additive Highly reversible zn anode
在线阅读 下载PDF
Interfacial Zn^(2+)-solvation regulator towards reversible and stable Zn anode
8
作者 Miao Zhou Xiongbin Luo +7 位作者 Hang Li Shan Guo Zhuang Tong Xiaotao Zhou Xu Li Zhaohui Hou Shuquan Liang Guozhao Fang 《Journal of Energy Chemistry》 2025年第1期684-692,共9页
Aqueous zinc-ion batteries (AZIBs) are fundamentally challenged by the instability of the electrode/electrolyte interface,predominantly due to irreversible zinc (Zn) deposition and hydrogen evolution.Particularly,the ... Aqueous zinc-ion batteries (AZIBs) are fundamentally challenged by the instability of the electrode/electrolyte interface,predominantly due to irreversible zinc (Zn) deposition and hydrogen evolution.Particularly,the intricate mechanisms behind the electrochemical discrepancies induced by interfacial Zn^(2+)-solvation and deposition behavior demand comprehensive investigation.Organic molecules endowed with special functional groups (such as hydroxyl,carboxyl,etc.) have the potential to significantly optimize the solvation structure of Zn^(2+)and regulate the interfacial electric double layer (EDL).By increasing nucleation overpotential and decreasing interfacial free energy,these functional groups facilitate a lower critical nucleation radius,thereby forming an asymptotic nucleation model to promote uniform Zn deposition.Herein,this study presents a pioneering approach by introducing trace amounts of n-butanol as solvation regulators to engineer the homogenized Zn (H-Zn) anode with a uniform and dense structure.The interfacial reaction and structure evolution are explored by in/ex-situ experimental techniques,indicating that the H-Zn anode exhibits dendrite-free growth,no by-products,and weak hydrogen evolution,in sharp contrast to the bare Zn.Consequently,the H-Zn anode achieves a remarkable Zn utilization rate of approximately 20% and simultaneously sustains a prolonged cycle life exceeding 500 h.Moreover,the H-Zn//NH_(4)V_(4)O^(10)(NVO) full battery showcases exceptional cycle stability,retaining 95.04%capacity retention after 400 cycles at a large current density of 5 A g^(-1).This study enlightens solvation-regulated additives to develop Zn anode with superior utilization efficiency and extended operational lifespan. 展开更多
关键词 Aqueous zinc-ion batteries zn^(2+)-solvation structure Interfacial reaction Asymptotic nucleation model Reversible and stable zn anode
在线阅读 下载PDF
Tris-buffered efficacy:enhancing stability and reversibility of Zn anode by efficient modulation at Zn/electrolyte interface
9
作者 Yong-Jian Wang Su-Hong Li +3 位作者 Lin Li Jian-Yong Ren Ling-Di Shen Chao Lai 《Rare Metals》 2025年第2期925-937,共13页
Aqueous zinc-ion batteries(AZIBs)have developed rapidly in recent years but still face several challenges,including zinc dendrites growth,hydrogen evolution reaction,passivation and corrosion.The pH of the electrolyte... Aqueous zinc-ion batteries(AZIBs)have developed rapidly in recent years but still face several challenges,including zinc dendrites growth,hydrogen evolution reaction,passivation and corrosion.The pH of the electrolyte plays a crucial role in these processes,significantly impacting the stability and reversibility of Zn^(2+)deposition.Therefore,pH-buffer tris(hydroxymethyl)amino methane(tris)is chosen as a versatile electrolyte additive to address these issues.Tris can buffer electrolyte pH at Zn/electrolyte interface by protonated/deprotonated nature of amino group,optimize the coordination environment of zinc solvate ions by its strong interaction with zinc ions,and simultaneously create an in-situ stable solid electrolyte interface membrane on the zinc anode surface.These synergistic effects effectively restrain dendrite formation and side reactions,resulting in a highly stable and reversible Zn anode,thereby enhancing the electrochemical performance of AZIBs.The Zn||Zn battery with 0.15 wt%tris additives maintains stable cycling for 1500 h at 4 mA·cm^(−2) and 1120 h at 10 mA·cm^(−2).Furthermore,the Coulombic efficiency reaches~99.2%at 4 mA·cm^(−2)@1 mAh·cm^(−2).The Zn||NVO full batteries also demonstrated a stable specific capacity and exceptional capacity retention. 展开更多
关键词 zn metal anode Hydrogen evolution reaction TRIS pH buffer zn/electrolyte interface
原文传递
Progress in research on metal-based materials in stabilized Zn anodes 被引量:11
10
作者 Le Li Shao-Feng Jia +3 位作者 Ming-Hui Cao Yong-Qiang Ji Heng-Wei Qiu Dan Zhang 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期20-40,共21页
Aqueous zinc-ion batteries(ZIBs) combine the benefits of metallic Zn anodes with those of aqueous electrolytes and are well suited for large-scale energy storage because of their inherent high safety, cost-effectivene... Aqueous zinc-ion batteries(ZIBs) combine the benefits of metallic Zn anodes with those of aqueous electrolytes and are well suited for large-scale energy storage because of their inherent high safety, cost-effectiveness, and eco-friendliness. Currently, the practical application of such batteries is hindered by the poor cycling performance of Zn anodes due to uncontrolled dendrite formation and severe side reactions, although recent reports suggest that these problems can be mitigated through the modification of Zn anodes with metal-based materials.Given that the mechanisms of improving Zn deposition and the structural evolution of metal-based materials have not been systematically reviewed, we herein systematically overview the metal-based materials used to stabilize Zn anodes, starting with a brief summary of the anode working mechanism and the challenges faced by stabilized Zn anodes. Subsequently, the design principles of Zn anodes stabilized by metal-based materials and the related recent progress are reviewed, and the key challenges and perspectives for the future development of such Zn anodes are proposed. 展开更多
关键词 Zinc-ion batteries(ZIBs) zn anode Metalbased materials Alloying metal Stabilized zn anodes
原文传递
Regulating Zn Deposition via an Artificial Solid–Electrolyte Interface with Aligned Dipoles for Long Life Zn Anode 被引量:15
11
作者 Kai Wu Jin Yi +6 位作者 Xiaoyu Liu Yang Sun Jin Cui Yihua Xie Yuyu Liu Yongyao Xia Jiujun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期107-117,共11页
Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn den... Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable.Herein,with the aim to regulate Zn deposition,an artificial solid–electrolyte interface is subtly engineered with a perovskite type material,BaTiO3,which can be polarized,and its polarization could be switched under the external electric field.Resulting from the aligned dipole in BaTiO3 layer,zinc ions could move in order during cycling process.Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth.As a result,the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm^(−2) with capacity of 1 mAh cm−2.Furthermore,this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries.The battery can deliver nearly 100%Coulombic efficiency at 2 Ag^(−1) after 300 cycles. 展开更多
关键词 Regulated zn deposition Artificial solid-electrolyte interface Perovskite type dielectric material zn anode zn ion battery
在线阅读 下载PDF
Simultaneously Regulating Uniform Zn^(2+) Flux and Electron Conduction by MOF/rGO Interlayers for High‑Performance Zn Anodes 被引量:10
12
作者 Ziqi Wang Liubing Dong +5 位作者 Weiyuan Huang Hao Jia Qinghe Zhao Yidi Wang Bin Fei Feng Pan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期34-44,共11页
Owing to the merits of low cost,high safety and environmental benignity,rechargeable aqueous Zn-based batteries(ZBs)have gained tremendous attention in recent years.Nevertheless,the poor reversibility of Zn anodes tha... Owing to the merits of low cost,high safety and environmental benignity,rechargeable aqueous Zn-based batteries(ZBs)have gained tremendous attention in recent years.Nevertheless,the poor reversibility of Zn anodes that originates from dendrite growth,surface passivation and corrosion,severely hinders the further development of ZBs.To tackle these issues,here we report a Janus separator based on a Zn-ion conductive metal-organic framework(MOF)and reduced graphene oxide(rGO),which is able to regulate uniform Zn2+flux and electron conduction simultaneously during battery operation.Facilitated by the MOF/rGO bifunctional interlayers,the Zn anodes demonstrate stable plating/stripping behavior(over 500 h at 1 mA cm^(−2)),high Coulombic efficiency(99.2%at 2 mA cm^(−2) after 100 cycles)and reduced redox barrier.Moreover,it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface.Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells,which deliver nearly 100%capacity retention after 2000 cycles at 4 A g^(−1) and high power density over 10 kW kg^(−1).This work provides a feasible route to the high-performance Zn anodes for ZBs. 展开更多
关键词 zn-based battery zn anode Janus separator Metal-organic framework Reduced graphene oxide
在线阅读 下载PDF
Synergistic“Anchor‑Capture”Enabled by Amino and Carboxyl for Constructing Robust Interface of Zn Anode 被引量:7
13
作者 Zhen Luo Yufan Xia +9 位作者 Shuang Chen Xingxing Wu Ran Zeng Xuan Zhang Hongge Pan Mi Yan Tingting Shi Kai Tao Ben Bin Xu Yinzhu Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期265-280,共16页
While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further devel... While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further development dramatically.Herein,we utilize the amino acid glycine(Gly)as an electrolyte additive to stabilize the Zn anode–electrolyte interface.The unique interfacial chemistry is facilitated by the synergistic“anchor-capture”effect of polar groups in Gly molecule,manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn^(2+)in the local region.As such,this robust anode–electrolyte interface inhibits the disordered migration of Zn^(2+),and effectively suppresses both side reactions and dendrite growth.The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22%at 1 mA cm^(−2)and 0.5 mAh cm^(−2)over 500 cycles.Even at a high Zn utilization rate(depth of discharge,DODZn)of 68%,a steady cycle life up to 200 h is obtained for ultrathin Zn foils(20μm).The superior rate capability and long-term cycle stability of Zn–MnO_(2)full cells further prove the effectiveness of Gly in stabilizing Zn anode.This work sheds light on additive designing from the specific roles of polar groups for AZIBs. 展开更多
关键词 zn anode–electrolyte interface Polar groups Synergistic“anchor-capture”effect Side reactions Dendrite growth
在线阅读 下载PDF
Advance in reversible Zn anodes promoted by 2D materials 被引量:7
14
作者 Shu-Yuan Lei Jin-Xiu Feng +5 位作者 Yu-Chao Chen Dong Zheng Wen-Xian Liu Wen-Hui Shi Fang-Fang Wu Xie-Hong Cao 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1350-1369,共20页
With the growing energy demand associated with high safety and low-cost requirement,aqueous zinc-ion batteries(AZIBs)have been considered as one of the most promising next-generation batteries.However,some key issues,... With the growing energy demand associated with high safety and low-cost requirement,aqueous zinc-ion batteries(AZIBs)have been considered as one of the most promising next-generation batteries.However,some key issues,such as uncontrollable dendrites growth,severe corrosion,hydrogen evolution and side reactions of Zn anodes during charge/discharge process,have hindered its pragmatic applications.Two-dimensional(2D)materials hold advantages of unique physical and chemical properties,large surface areas and abundant active sites,which have been successfully used to overcome the above shortcomings of Zn anodes in recent years.In this review,the issues and challenges of Zn anodes are outlined.Then,the state-of-the-art progress on Zn anodes modification based on 2D materials such as graphene,2D metal carbides and nitrides(MXenes),2D metal-organic frameworks(MOFs),2D covalent organic frameworks(COFs),2D transition metal compounds and other 2D materials is discussed in detail.Finally,the perspectives of employing 2D materials in highly reversible Zn anodes are summarized and discussed. 展开更多
关键词 2D materials Aqueous zinc-ion battery zn anodes Dendrites growth
原文传递
An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries 被引量:5
15
作者 Yuzhu Chu Lingxiao Ren +2 位作者 Zhenglin Hu Chengde Huang Jiayan Luo 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1006-1042,共37页
Combining the unique advantages of aqueous electrolytes and metallic Zn anode, rechargeable aqueous Zn-ion batteries(ZIBs) are of great promise for large-scale energy storage applications due to their inherent high sa... Combining the unique advantages of aqueous electrolytes and metallic Zn anode, rechargeable aqueous Zn-ion batteries(ZIBs) are of great promise for large-scale energy storage applications due to their inherent high safety, low cost, and environmental friendliness. As the essential component of ZIBs, Zn metal anode suffers from severe dendrite formation and inevitable side reactions(e.g. corrosion and hydrogen evolution)in aqueous electrolytes, which leads to low Coulombic efficiency and inferior cycling stability, impeding their large-scale applications. To be compatible with satisfactory aqueous ZIBs, Zn anode has been modified from various perspectives and focus areas. Herein, based on their intrinsic characteristics, we review the related improvement strategies for Zn anode, including interphase, substrate, and bulk design, so as to achieve an in-depth understanding of Zn anode optimization. Furthermore, the timely summary of characterization methods for Zn anodes are also performed for the first time, from both thermodynamic and kinetics perspectives, which is particularly helpful for beginners to understand the complicated characterizations and employ suitable methods. Finally, certain noteworthy points are put forward for subsequent investigation of aqueous ZIBs. It is expected that this review will enlighten researchers to explore more efficient optimization strategies for Zn anode in aqueous electrolytes. 展开更多
关键词 zn anodes Corrosion DENDRITE BATTERIES Electrolyte
在线阅读 下载PDF
Interface Reversible Electric Field Regulated by Amphoteric Charged Protein-Based Coating Toward High-Rate and Robust Zn Anode 被引量:4
16
作者 Meihua Zhu Qing Ran +7 位作者 Houhou Huang Yunfei Xie Mengxiao Zhong Geyu Lu Fu-Quan Bai Xing-You Lang Xiaoteng Jia Danming Chao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期535-548,共14页
Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead ... Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead to high anodic polarization.Here,we present a bio-inspired silk fibroin(SF)coating with amphoteric charges to construct an interface reversible electric field,which manipulates the transfer kinetics of Zn^(2+) and reduces anodic polarization.The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn^(2+) flux via the inter-play between the charged coating and adsorbed ions,endowing the Zn-SF anode with low polarization voltage and stable plating/stripping.Experimental analyses with theo-retical calculations suggest that SF can facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+) and provide nucleation sites for uniform deposition.Consequently,the Zn-SF anode delivers a high-rate performance with low voltage polarization(83 mV at 20 mA cm^(−2)) and excellent stability(1500 h at 1 mA cm^(−2);500 h at 10 mA cm^(−2)),realizing exceptional cumulative capacity of 2.5 Ah cm^(−2).The full cell coupled with Zn_(x)V_(2)O_(5)·nH_(2)O(ZnVO)cathode achieves specific energy of~270.5/150.6 Wh kg^(−1)(at 0.5/10 A g^(−1))with-99.8% Coulombic efficiency and retains~80.3%(at 5.0 A g^(−1))after 3000 cycles. 展开更多
关键词 Silk fibroin coating zn anode Amphoteric charge Interfacial engineering Aqueous zinc-ion batteries
在线阅读 下载PDF
Boosting Zn^(2+)kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes 被引量:2
17
作者 Bin Luo Yang Wang +5 位作者 Leilei Sun Sinan Zheng Guosheng Duan Zhean Bao Zhizhen Ye Jingyun Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期632-641,I0016,共11页
Aqueous zinc ion batteries(AZIBs)are an advanced secondary battery technology to supplement lithiumion batteries.It has been widely concerned and developed recently based on the element abundance and safety advantages... Aqueous zinc ion batteries(AZIBs)are an advanced secondary battery technology to supplement lithiumion batteries.It has been widely concerned and developed recently based on the element abundance and safety advantages.However,AZIBs still suffer from serious problems such as dendrites Zn,hydrogen evolution corrosion,and surface passivation,which hinder the further commercial application of AZIBs.Herein,an in-situ ZnCr_(2)O_(4)(ZCO)interface endows AZIBs with dendrite-free and ultra-low polarization by realizing Zn^(2+)pre-desolvation,constraining H2O-induced corrosio n,and boosting Zn^(2+)transport/deposition kinetics.The ZCO@Zn anode harvests an ultrahigh cumulative capacity of~20000 mA h cm^(-2)(cycle time:over 4000 h)at a high current density of 10 mA cm^(-2),indicating excellent reversibility of Zn deposition,Such superior performance is among the best cyclability in AZIBs.Moreover,the multifunctional ZCO interface improves the Coulombic efficiency(CE)to 99.7%for more than 2600 cycles.The outstanding electrochemical performance is also verified by the long-term cycle stability of ZCO@Zn//α-MnO_(2) full cells.Notably,the as-proposed method is efficient and low-cost enough to enable mass production.This work provides new insights into the uniform Zn electrodeposition at the scale of interfacial Zn^(2+)predesolvation and kinetics improvement. 展开更多
关键词 Zinc ion battery Dendrite-free zn anode In-situ reaction Pre-desolvation zn^(2+)kinetics
在线阅读 下载PDF
2D Materials Boost Advanced Zn Anodes:Principles,Advances,and Challenges 被引量:2
18
作者 Songhe Zheng Wanyu Zhao +3 位作者 Jianping Chen Xiaoli Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期1-22,共22页
Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive resea... Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive research progress made in developing high-performance cathodes,the Zn anode issues,such as Zn dendrites,corrosion,and hydrogen evolution,have been observed to shorten ZIB’s lifespan seriously,thus restricting their practical application.Engineering advanced Zn anodes based on two-dimensional(2D)materials are widely investigated to address these issues.With atomic thickness,2D materials possess ultrahigh specific surface area,much exposed active sites,superior mechanical strength and flexibility,and unique electrical properties,which confirm to be a promising alternative anode material for ZIBs.This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress.Firstly,the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced.Then,the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized.Finally,perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed. 展开更多
关键词 Zinc-ion battery Large-scale energy storage application zn anode LIFESPAN 2D materials
在线阅读 下载PDF
Manipulating Interfacial Stability Via Absorption-Competition Mechanism for Long-Lifespan Zn Anode 被引量:2
19
作者 Meijia Qiu Liang Ma +3 位作者 Peng Sun Zilong Wang Guofeng Cui Wenjie Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期161-173,共13页
The stability of Zn anode in various Znbased energy storage devices is the key problem to be solved.Herein,aromatic aldehyde additives are selected to modulate the interface reactions between the Zn anode and electrol... The stability of Zn anode in various Znbased energy storage devices is the key problem to be solved.Herein,aromatic aldehyde additives are selected to modulate the interface reactions between the Zn anode and electrolyte.Through comprehensively considering electrochemical measurements,DFT calculations and FEA simulations,novel mechanisms of one kind of aromatic aldehyde,veratraldehyde in inhibiting Zn dendrite/by-products can be obtained.This additive prefers to absorb on the Zn surface than H_(2)O molecules and Zn^(2+),while competes with hydrogen evolution reaction and Zn plating/stripping proces s via redox reactions,thus preventing the decomposition of active H_(2)O near the interface and uncontrollable Zn dendrite growth via a synactic absorption-competition mechanism.As a result,Zn-Zn symmetric cells with the veratraldehyde additive realize an excellent cycling life of 3200 h under 1 mA cm^(-2)/1 mAh cm^(-2)and over 800 h even under 5 mA cm^(-2)/5 mAh cm^(-2).Moreover,Zn-Ti and Zn-MnO_(2)cells with the veratraldehyde additive both obtain elevated performance than that with pure ZnSO_(4)electrolyte.Finally,two more aromatic aldehyde additives are chosen to prove their universality in stabilizing Zn anodes. 展开更多
关键词 Aromatic aldehyde Absorption-competition mechanism zn anode Interfacial stability
在线阅读 下载PDF
Electrolyte Strategies Toward Optimizing Zn Anode for Zinc-Ion Batteries 被引量:2
20
作者 Zenglong Xu Huiyan Xu +5 位作者 Jinfeng Sun Jieqiang Wang Degang Zhao Bingqiang Cao Xiutong Wang Shuhua Yang 《Transactions of Tianjin University》 EI CAS 2023年第6期407-431,共25页
Zinc-ion batteries(ZIBs)with low cost and high safety have become potential candidates for large-scale energy storage.However,the knotty Zn anode issues such as dendritic growth,hydrogen evolution reaction(HER)and cor... Zinc-ion batteries(ZIBs)with low cost and high safety have become potential candidates for large-scale energy storage.However,the knotty Zn anode issues such as dendritic growth,hydrogen evolution reaction(HER)and corrosion and passivation are still unavoidable,which greatly limits the wide applications of ZIBs.The states and additives of electrolytes are closely related to these problems.However,there is a lack of systematic understanding and discussion about the intrinsic connection between the states and additives of electrolyte and Zn anode issues.In this review,the basic principles of dendritic growth,HER and corrosion and passivation are fi rstly introduced,and then,electrolyte optimization strategies with the corresponding electrochemical properties are systematically summarized.In particular,the action mechanism of electrolyte additives and the electrolyte states for Zn anode optimization is analyzed in detail.Finally,some unique views on the improvement of electrolyte for Zn anode optimization are put forward,which is expected to provide a certain professional reference for designing high-performance ZIBs. 展开更多
关键词 Zinc-ion batteries zn anode ELECTROLYTE ADDITIVES
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部