研究基于分数阶黏弹性材料构造的Van der pol减振系统在外部宽带噪声激励下的随机稳定性和随机分岔行为.考虑约束条件的影响,引入非平滑Zhuravlev变换,将碰撞系统转化为无碰撞的动力学系统.利用一组拟周期函数近似替换分数阶微分,通过...研究基于分数阶黏弹性材料构造的Van der pol减振系统在外部宽带噪声激励下的随机稳定性和随机分岔行为.考虑约束条件的影响,引入非平滑Zhuravlev变换,将碰撞系统转化为无碰撞的动力学系统.利用一组拟周期函数近似替换分数阶微分,通过随机平均法得到系统的It8随机微分方程,根据最大Lyapunov指数法和奇异边界理论分类讨论系统的随机稳定性,利用拟Hamilton系统随机平均法分析系统在线性It8方程下的随机分岔行为,得到D-分岔的临界条件,进一步求出与系统幅值相关的稳态概率密度函数.使用MATLAB绘制稳态概率密度曲线,直观展现系统发生的稳态变化.结果表明,当分数阶阶次和噪声强度在一定阈值内变化时,可诱导系统产生P-分岔行为.展开更多
The subharmonic response of a single-degree-of-freedom linear vibroimpact oscillator with a one-sided barrier to the narrow-band random excitation is investigated.The analysis is based on a special Zhuravlev transform...The subharmonic response of a single-degree-of-freedom linear vibroimpact oscillator with a one-sided barrier to the narrow-band random excitation is investigated.The analysis is based on a special Zhuravlev transformation,which reduces the system to the one without impacts or velocity jumps,and thereby permits the applications of asymptotic averaging over the period for slowly varying the inphase and quadrature responses.The averaged stochastic equations are exactly solved by the method of moments for the mean square response amplitude for the case of zero offset.A perturbation-based moment closure scheme is proposed for the case of nonzero offset.The effects of damping,detuning,and bandwidth and magnitudes of the random excitations are analyzed.The theoretical analyses are verified by the numerical results.The theoretical analyses and numerical simulations show that the peak amplitudes can be strongly reduced at the large detunings.展开更多
文摘研究基于分数阶黏弹性材料构造的Van der pol减振系统在外部宽带噪声激励下的随机稳定性和随机分岔行为.考虑约束条件的影响,引入非平滑Zhuravlev变换,将碰撞系统转化为无碰撞的动力学系统.利用一组拟周期函数近似替换分数阶微分,通过随机平均法得到系统的It8随机微分方程,根据最大Lyapunov指数法和奇异边界理论分类讨论系统的随机稳定性,利用拟Hamilton系统随机平均法分析系统在线性It8方程下的随机分岔行为,得到D-分岔的临界条件,进一步求出与系统幅值相关的稳态概率密度函数.使用MATLAB绘制稳态概率密度曲线,直观展现系统发生的稳态变化.结果表明,当分数阶阶次和噪声强度在一定阈值内变化时,可诱导系统产生P-分岔行为.
基金supported by the National Natural Science Foundation of China (Nos. 10772046 and 50978058)the Natural Science Foundation of Guangdong Province of China (Nos. 7010407 and 05300566)
文摘The subharmonic response of a single-degree-of-freedom linear vibroimpact oscillator with a one-sided barrier to the narrow-band random excitation is investigated.The analysis is based on a special Zhuravlev transformation,which reduces the system to the one without impacts or velocity jumps,and thereby permits the applications of asymptotic averaging over the period for slowly varying the inphase and quadrature responses.The averaged stochastic equations are exactly solved by the method of moments for the mean square response amplitude for the case of zero offset.A perturbation-based moment closure scheme is proposed for the case of nonzero offset.The effects of damping,detuning,and bandwidth and magnitudes of the random excitations are analyzed.The theoretical analyses are verified by the numerical results.The theoretical analyses and numerical simulations show that the peak amplitudes can be strongly reduced at the large detunings.