Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to thei...Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.展开更多
Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM...Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.展开更多
Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the ...Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.展开更多
In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous p...In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous power. At the end of this paper the simulating calculation using EMTP has been also performed for the same transformer. The comparison shows that the two sets of results are very close to each other,and proves the correctness of the new method. The new method presented in this paper is helpful to verify the correctness of the power transformer design,analyze the behavior of the transformer protection under switching and study the new transformer protection principles.展开更多
This article gives an overview of the main passive solutions and active techniques, based on AC switches to limit inrush currents in medium power AC-DC converters (up to 3.7 kW) for electric vehicle charging systems...This article gives an overview of the main passive solutions and active techniques, based on AC switches to limit inrush currents in medium power AC-DC converters (up to 3.7 kW) for electric vehicle charging systems. In particular, a strategy, based on SCR (silicon controlled rectifier) phase, shift control in a mixed rectifier bridge with diodes and thyristors, is proposed. The challenge is to help designers optimize the triggering delay of SCRs to both limit the peak value of inrush current spikes and optimize the charge duration of the DC-link capacitor. A mathematical model (Mathcad engineering tool) has been defined to point out, the interest of a variable triggering delay to control SCRs to meet the expectations described previously. Experimental measurements using an industrial evaluation board of the AC-DC converter demonstrate the robustness of the method.展开更多
In this study, we will cover the basic methods used to distinguish between inrush current and fault current in power transformers. First, the nature of inrush current is presented compared to the fault current. Then t...In this study, we will cover the basic methods used to distinguish between inrush current and fault current in power transformers. First, the nature of inrush current is presented compared to the fault current. Then the nature of the magnetizing current due to energizing a power transformer at no-load is explained. The first generation of methods used to disable the protective relay system during inrush current, namely the Desensitizing and Tripping Suppressor, is introduced. The second generation, the harmonic restraint method and the waveform-based restraint method with their different versions, is explained. Then we will explore thoroughly the fictitious equivalent resistance method as an example of the third generation of model type restraining or blocking methods. Finally, a comparison between these methods and conclusion is carried out.展开更多
The method is based on that the waveform of the inrush distorts seriously, while the fault current nearly keeps sinusoid. The complicated signal can be decomposed into a finite intrinsic mode functions (IMF) by the EM...The method is based on that the waveform of the inrush distorts seriously, while the fault current nearly keeps sinusoid. The complicated signal can be decomposed into a finite intrinsic mode functions (IMF) by the EMD, then define and compute the projection area on X-axis of each IMF—, the specific gravity of SIMF—, and the maximum of —. We can get a new scheme of transformer-protection based on comparing the difference between inrush and fault current. Theoretical analysis show that the method can precisely discriminate inrush and fault current, fault clearance time is about 20ms. Moreover, it is convenient to achieve and hardly be affect by not-periodic component.展开更多
The energizing of large power transformers has long been considered a critical event in the operation of an electric power system. When a transformer is energized by the utility, a typical inrush current could be as h...The energizing of large power transformers has long been considered a critical event in the operation of an electric power system. When a transformer is energized by the utility, a typical inrush current could be as high as ten times its rated current. This could cause many problems from mechanical stress on transformer windings to harmonics injection, and system protection malfunction. There have been numerous researches focusing on calculation and mitigation of the transformer inrush current. With the development of smart grid, distributed generation from independent power producers (IPPs) is growing rapidly. This paper investigates the inrush current due to black start of an IPP system with several parallel transformers, through a simulation model in DIgSILENT Power Factory software. The study demonstrates that a single genset is capable of energizing a group of transformers since the overall inrush current is slightly above the inrush of the transformer directly connected to the generator. In addition, a simple method is proposed to mitigate the inrush current of the transformers using an auxiliary transformer.展开更多
Preventive maintenance in the transformer is performed through a dif-ferential relay protection system,and it protects the transformer from internal and external faults.However,the Current Transformer(CT)in the differ...Preventive maintenance in the transformer is performed through a dif-ferential relay protection system,and it protects the transformer from internal and external faults.However,the Current Transformer(CT)in the differential protec-tion system mal-operates during inrush currents.CT saturates due to magnetizing inrush currents and causes false tripping of the differential relays.Moreover,iden-tification of tripping in protection relay either due to inrush current or internal faults needs to be diagnosed.For the above problem,continuous monitoring of transformer breather and CT terminals with thermal camera helps detect the trip-ping in relay due to inrush or internal fault.The transformer’s internal fault leads to high breathing process in the transformer breather,never for inrush currents.During inrush currents,CT temperature is increased.Continuous monitoring of breather and CT of the transformer through thermal imaging and radiometric pix-els detect the causes of CT saturation and differentiates maloperation.Hybrid wavelet threshold image analytics(HWT-IA)based radiometric pixels analysis of the transformer breather and CT after de-noising provides an accurate result of about 95%for identification of the false tripping of differential protection system of transformer.展开更多
The primary winding of the transformer will generate large inrush current due to the saturation of iron core when an unloaded transformer is switched-on. The inrush current not only causes mechanical interaction force...The primary winding of the transformer will generate large inrush current due to the saturation of iron core when an unloaded transformer is switched-on. The inrush current not only causes mechanical interaction force due to which the windings are damaged, but also induces the differential protection relays to operate incorrectly. In this paper, the mathematical model of unloaded single phase transformer in switch-on is analyzed; the computation formulas of the inrush current and its interruption angle are presented. The experiment investigation of single phase transformers with different capacities shows that the inrush current measurement result is consistent with theoretical analysis. The inrush current waveform is typically a steeple top waveform with high order harmonics and damping in one direction. In the same condition, large inrush current amplitude will be induced with smaller switching angle, larger residual flux and smaller saturation flux.展开更多
In a dual three-phase open-winding permanent magnet synchronous motor(DTP-OW-PMSM)system sharing a common DC bus,dual zero-sequence current(ZSC)loops are inherent,leading to increased inverter capacity usage,losses,an...In a dual three-phase open-winding permanent magnet synchronous motor(DTP-OW-PMSM)system sharing a common DC bus,dual zero-sequence current(ZSC)loops are inherent,leading to increased inverter capacity usage,losses,and degraded operational performance.To mitigate ZSC,the dual zero-sequence equivalent circuit of the DTP-OW-PMSM system is established,and zero-vector combinations with significant zero-sequence voltage amplitudes are employed.Since the two sets of ZSC loops are independent,four zero-vector combinations can be determined.A ZSC suppression strategy utilizing hysteresis controllers is proposed.Compared with the PI controller,hysteresis controllers offer wider bandwidth and simplify control parameter tuning.Additionally,180-degree decoupling streamlines vector selection for multiphase open-winding topologies.Furthermore,the modulation range of the proposed strategy is investigated.Finally,experiment in a direct-drive motor is implemented,and experimental results confirming its effectiveness.展开更多
基金supported in part by National Key Research and Development Program of China(2016YFB0900603)Technology Projects of State Grid Corporation of China(52094017000W).
文摘Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.
基金supported in part by the National Natural Science Foundation of China under Grant 51977099。
文摘Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-53)Initial Research Funds for Young Teachers of Donghua University,China(104070053029)Shanghai Rising-Star Program,China(No.19QA1400400)。
文摘Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.
文摘In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous power. At the end of this paper the simulating calculation using EMTP has been also performed for the same transformer. The comparison shows that the two sets of results are very close to each other,and proves the correctness of the new method. The new method presented in this paper is helpful to verify the correctness of the power transformer design,analyze the behavior of the transformer protection under switching and study the new transformer protection principles.
文摘This article gives an overview of the main passive solutions and active techniques, based on AC switches to limit inrush currents in medium power AC-DC converters (up to 3.7 kW) for electric vehicle charging systems. In particular, a strategy, based on SCR (silicon controlled rectifier) phase, shift control in a mixed rectifier bridge with diodes and thyristors, is proposed. The challenge is to help designers optimize the triggering delay of SCRs to both limit the peak value of inrush current spikes and optimize the charge duration of the DC-link capacitor. A mathematical model (Mathcad engineering tool) has been defined to point out, the interest of a variable triggering delay to control SCRs to meet the expectations described previously. Experimental measurements using an industrial evaluation board of the AC-DC converter demonstrate the robustness of the method.
文摘In this study, we will cover the basic methods used to distinguish between inrush current and fault current in power transformers. First, the nature of inrush current is presented compared to the fault current. Then the nature of the magnetizing current due to energizing a power transformer at no-load is explained. The first generation of methods used to disable the protective relay system during inrush current, namely the Desensitizing and Tripping Suppressor, is introduced. The second generation, the harmonic restraint method and the waveform-based restraint method with their different versions, is explained. Then we will explore thoroughly the fictitious equivalent resistance method as an example of the third generation of model type restraining or blocking methods. Finally, a comparison between these methods and conclusion is carried out.
文摘The method is based on that the waveform of the inrush distorts seriously, while the fault current nearly keeps sinusoid. The complicated signal can be decomposed into a finite intrinsic mode functions (IMF) by the EMD, then define and compute the projection area on X-axis of each IMF—, the specific gravity of SIMF—, and the maximum of —. We can get a new scheme of transformer-protection based on comparing the difference between inrush and fault current. Theoretical analysis show that the method can precisely discriminate inrush and fault current, fault clearance time is about 20ms. Moreover, it is convenient to achieve and hardly be affect by not-periodic component.
文摘The energizing of large power transformers has long been considered a critical event in the operation of an electric power system. When a transformer is energized by the utility, a typical inrush current could be as high as ten times its rated current. This could cause many problems from mechanical stress on transformer windings to harmonics injection, and system protection malfunction. There have been numerous researches focusing on calculation and mitigation of the transformer inrush current. With the development of smart grid, distributed generation from independent power producers (IPPs) is growing rapidly. This paper investigates the inrush current due to black start of an IPP system with several parallel transformers, through a simulation model in DIgSILENT Power Factory software. The study demonstrates that a single genset is capable of energizing a group of transformers since the overall inrush current is slightly above the inrush of the transformer directly connected to the generator. In addition, a simple method is proposed to mitigate the inrush current of the transformers using an auxiliary transformer.
文摘Preventive maintenance in the transformer is performed through a dif-ferential relay protection system,and it protects the transformer from internal and external faults.However,the Current Transformer(CT)in the differential protec-tion system mal-operates during inrush currents.CT saturates due to magnetizing inrush currents and causes false tripping of the differential relays.Moreover,iden-tification of tripping in protection relay either due to inrush current or internal faults needs to be diagnosed.For the above problem,continuous monitoring of transformer breather and CT terminals with thermal camera helps detect the trip-ping in relay due to inrush or internal fault.The transformer’s internal fault leads to high breathing process in the transformer breather,never for inrush currents.During inrush currents,CT temperature is increased.Continuous monitoring of breather and CT of the transformer through thermal imaging and radiometric pix-els detect the causes of CT saturation and differentiates maloperation.Hybrid wavelet threshold image analytics(HWT-IA)based radiometric pixels analysis of the transformer breather and CT after de-noising provides an accurate result of about 95%for identification of the false tripping of differential protection system of transformer.
文摘The primary winding of the transformer will generate large inrush current due to the saturation of iron core when an unloaded transformer is switched-on. The inrush current not only causes mechanical interaction force due to which the windings are damaged, but also induces the differential protection relays to operate incorrectly. In this paper, the mathematical model of unloaded single phase transformer in switch-on is analyzed; the computation formulas of the inrush current and its interruption angle are presented. The experiment investigation of single phase transformers with different capacities shows that the inrush current measurement result is consistent with theoretical analysis. The inrush current waveform is typically a steeple top waveform with high order harmonics and damping in one direction. In the same condition, large inrush current amplitude will be induced with smaller switching angle, larger residual flux and smaller saturation flux.
基金Supported by the National Natural Science Foundation of China(52025073).
文摘In a dual three-phase open-winding permanent magnet synchronous motor(DTP-OW-PMSM)system sharing a common DC bus,dual zero-sequence current(ZSC)loops are inherent,leading to increased inverter capacity usage,losses,and degraded operational performance.To mitigate ZSC,the dual zero-sequence equivalent circuit of the DTP-OW-PMSM system is established,and zero-vector combinations with significant zero-sequence voltage amplitudes are employed.Since the two sets of ZSC loops are independent,four zero-vector combinations can be determined.A ZSC suppression strategy utilizing hysteresis controllers is proposed.Compared with the PI controller,hysteresis controllers offer wider bandwidth and simplify control parameter tuning.Additionally,180-degree decoupling streamlines vector selection for multiphase open-winding topologies.Furthermore,the modulation range of the proposed strategy is investigated.Finally,experiment in a direct-drive motor is implemented,and experimental results confirming its effectiveness.