Cu-catalyzed electrochemical CO_(2)reduction reaction(CO_(2)RR)and CO reduction reaction(CORR)are of great interest due to their potential to produce carbon-neutral and value-added multicarbon(C_(2+))chemicals.In prac...Cu-catalyzed electrochemical CO_(2)reduction reaction(CO_(2)RR)and CO reduction reaction(CORR)are of great interest due to their potential to produce carbon-neutral and value-added multicarbon(C_(2+))chemicals.In practice,CO_(2)RR and CORR are typically operated at industrially relevant current densities,making the process exothermal.Although the increased operation temperature is known to affect the performance of CO_(2)RR and CORR,the relationship between temperatures and kinetic parameters was not clearly elaborated,particularly in zero-gap reactors.In this study,we detail the effect of the temperature on Cu-catalyzed CO_(2)RR and CORR.Our electrochemical and operando spectroscopic studies show that high temperatures increase the activity of CO_(2)RR to CO and CORR to C_(2)H_(4) by enhancing the mass transfer of CO_(2)and CO.As the rates of these two processes are highly influenced by reactant diffusion,elevating the operating temperature results in high local CO_(2)and CO availability to accelerate product formation.Consequently,the ^(*)CO coverage in both cases increases at higher temperatures.However,under CO_(2)RR conditions,^(*)CO desorption is more favorable than carbon-carbon(C—C)coupling thermodynamically at high temperatures,causing the reduction in the Faradaic efficiency(FE)of C_(2)H_(4).In CORR,the high-temperature-augmented CO diffusion overcomes the unfavorable adsorption thermodynamics,increasing the probability of C—C coupling.展开更多
The anomalous dips A1, A2 on mobility versus temperature curves are studied in different magnetic fields. The experimental results show that A1, A2 are caused by the acceptor band conductance when the acceptor density...The anomalous dips A1, A2 on mobility versus temperature curves are studied in different magnetic fields. The experimental results show that A1, A2 are caused by the acceptor band conductance when the acceptor density in the conduction band is sufficiently high, and A1 is caused by mercury vacancies.展开更多
Despite considerable efforts to develop electrolyzers for energy conversion,progress has been hindered during the implementation stage by different catalyst development requirements in academic and industrial research...Despite considerable efforts to develop electrolyzers for energy conversion,progress has been hindered during the implementation stage by different catalyst development requirements in academic and industrial research.Herein,a coherent workflow for the efficient transition of electrocatalysts from basic research to application readiness for the alkaline oxygen evolution reaction is proposed.To demonstrate this research approach,La_(0.8)Sr_(0.2)CoO_(3) is selected as a catalyst,and its electrocatalytic performance is compared with that of the benchmark material NiFe_(2)O_(4).The La_(0.8)Sr_(0.2)CoO_(3) catalyst with the desired dispersity is successfully synthesized by scalable spray-flame synthesis.Subsequently,inks are formulated using different binders(Nafion^(®),Naf;Sustainion^(®),Sus),and nickel substrates are spray coated,ensuring a homogeneous catalyst distribution.Extensive electrochemical evaluations,including several scale-bridging techniques,highlight the efficiency of the La_(0.8)Sr_(0.2)CoO_(3) catalyst.Experiments using the scanning droplet cell(SDC)indicate good lateral homogeneity for La_(0.8)Sr_(0.2)CoO_(3) electrodes and NiFe_(2)O_(4)-Sus,while the NiFe_(2)O_(4)-Naf film suffers from delamination.Among the various half-cell techniques,SDC proves to be a valuable tool to quickly check whether a catalyst layer is suitable for full-cell-level testing and will be used for the fast-tracking of catalysts in the future.Complementary compression and flow cell experiments provide valuable information on the electrodes'behavior upon exposure to chemical and mechanical stress.Finally,parameters and conditions simulating industrial settings are applied using a zero-gap cell.Findings from various research fields across different scales obtained based on the developed coherent workflow contribute to a better understanding of the electrocatalytic system at the early stages of development and provide important insights for the evaluation of novel materials that are to be used in large-scale industrial applications.展开更多
基金supported by the National Natural Science Foundation of China(22179088)the Natural Science Foundation of Jiangsu Province of China(BK20210699)+2 种基金the National Natural Science Fund for Excellent Young Scientists Fund Program(Overseas)the Program for Jiangsu Specially-Appointed Professors,the Program of Soochow Innovation and Entrepreneurship Leading Talents(ZXL2022450)the start-up supports of Soochow University,Suzhou Key Laboratory of Functional Nano&Soft Materials,the Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,the Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘Cu-catalyzed electrochemical CO_(2)reduction reaction(CO_(2)RR)and CO reduction reaction(CORR)are of great interest due to their potential to produce carbon-neutral and value-added multicarbon(C_(2+))chemicals.In practice,CO_(2)RR and CORR are typically operated at industrially relevant current densities,making the process exothermal.Although the increased operation temperature is known to affect the performance of CO_(2)RR and CORR,the relationship between temperatures and kinetic parameters was not clearly elaborated,particularly in zero-gap reactors.In this study,we detail the effect of the temperature on Cu-catalyzed CO_(2)RR and CORR.Our electrochemical and operando spectroscopic studies show that high temperatures increase the activity of CO_(2)RR to CO and CORR to C_(2)H_(4) by enhancing the mass transfer of CO_(2)and CO.As the rates of these two processes are highly influenced by reactant diffusion,elevating the operating temperature results in high local CO_(2)and CO availability to accelerate product formation.Consequently,the ^(*)CO coverage in both cases increases at higher temperatures.However,under CO_(2)RR conditions,^(*)CO desorption is more favorable than carbon-carbon(C—C)coupling thermodynamically at high temperatures,causing the reduction in the Faradaic efficiency(FE)of C_(2)H_(4).In CORR,the high-temperature-augmented CO diffusion overcomes the unfavorable adsorption thermodynamics,increasing the probability of C—C coupling.
文摘The anomalous dips A1, A2 on mobility versus temperature curves are studied in different magnetic fields. The experimental results show that A1, A2 are caused by the acceptor band conductance when the acceptor density in the conduction band is sufficiently high, and A1 is caused by mercury vacancies.
基金Fraunhofer-Gesellschaft,Grant/Award Number:097-602175Ministry of Culture and Science of the State of North Rhine-Westphalia,Grant/Award Number:Mat4Hy+2 种基金Mercator Research Center Ruhr,Grant/Award Numbers:Ex-2021-0034,Ko-2021-0016Bundesministerium für Bildung und Forschung,Grant/Award Number:03XP0263Deutsche Forschungsgemeinschaft,Grant/Award Number:CRC/TRR 247。
文摘Despite considerable efforts to develop electrolyzers for energy conversion,progress has been hindered during the implementation stage by different catalyst development requirements in academic and industrial research.Herein,a coherent workflow for the efficient transition of electrocatalysts from basic research to application readiness for the alkaline oxygen evolution reaction is proposed.To demonstrate this research approach,La_(0.8)Sr_(0.2)CoO_(3) is selected as a catalyst,and its electrocatalytic performance is compared with that of the benchmark material NiFe_(2)O_(4).The La_(0.8)Sr_(0.2)CoO_(3) catalyst with the desired dispersity is successfully synthesized by scalable spray-flame synthesis.Subsequently,inks are formulated using different binders(Nafion^(®),Naf;Sustainion^(®),Sus),and nickel substrates are spray coated,ensuring a homogeneous catalyst distribution.Extensive electrochemical evaluations,including several scale-bridging techniques,highlight the efficiency of the La_(0.8)Sr_(0.2)CoO_(3) catalyst.Experiments using the scanning droplet cell(SDC)indicate good lateral homogeneity for La_(0.8)Sr_(0.2)CoO_(3) electrodes and NiFe_(2)O_(4)-Sus,while the NiFe_(2)O_(4)-Naf film suffers from delamination.Among the various half-cell techniques,SDC proves to be a valuable tool to quickly check whether a catalyst layer is suitable for full-cell-level testing and will be used for the fast-tracking of catalysts in the future.Complementary compression and flow cell experiments provide valuable information on the electrodes'behavior upon exposure to chemical and mechanical stress.Finally,parameters and conditions simulating industrial settings are applied using a zero-gap cell.Findings from various research fields across different scales obtained based on the developed coherent workflow contribute to a better understanding of the electrocatalytic system at the early stages of development and provide important insights for the evaluation of novel materials that are to be used in large-scale industrial applications.