期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Zero−DCE模型的矿井低照度图像增强方法
被引量:
2
1
作者
王轶玮
李晓宇
+1 位作者
翁智
白凤山
《工矿自动化》
北大核心
2025年第2期57-64,99,共9页
煤矿井下监控图像中存在噪声,清晰度低,且颜色和纹理信息缺失,采用基于机器学习的图像增强方法时还面临低照度−正常照度图像配对数据集采集困难的问题。提出一种改进零参考深度曲线估计(Zero−DCE)模型,并将其应用于矿井低照度图像增强...
煤矿井下监控图像中存在噪声,清晰度低,且颜色和纹理信息缺失,采用基于机器学习的图像增强方法时还面临低照度−正常照度图像配对数据集采集困难的问题。提出一种改进零参考深度曲线估计(Zero−DCE)模型,并将其应用于矿井低照度图像增强。使用Leaky ReLU激活函数替换Zero−DCE模型中的ReLU激活函数,以加快模型收敛速度,提升低照度图像特征学习效率;在Zero−DCE模型浅层与深层网络之间的跳跃连接处引入卷积块注意力模块(CBAM),以提高模型对图像关键特征的表达能力;在浅层网络中引入非对称卷积块(ACB),以优化模型对局部图像特征的学习能力和细节特征的表现能力;在深层网络中采用串联卷积核(CCK),以降低模型参数量和计算量,缩短模型训练时间。采用LOL公共数据集和矿井自建数据集进行实验验证,结果表明:改进Zero−DCE模型的均方误差(MSE)、峰值信噪比(PSNR)、结构相似性(SSIM)、自然图像质量评估器(NIQE)和视觉信息保真度(VIF)整体上优于典型图像增强模型,在自建数据集上的MSE和NIQE较Zero−DCE模型分别降低16.25%和2.93%,PSNR,SSIM和VIF分别提高2.87%,1.87%和17.64%;图像增强视觉效果较好,可在提高图像亮度的同时有效保留细节纹理信息,降噪效果明显;对单幅图像的推理时间为0.138 s,可实现图像实时增强。
展开更多
关键词
矿井低照度图像
图像增强
零参考深度曲线估计网络
zero
−
dce
模型
无监督学习
在线阅读
下载PDF
职称材料
基于深度学习的暗光场景下图像优化研究
2
作者
刘亮龙
罗梦贞
《激光杂志》
北大核心
2025年第8期123-127,共5页
为了增强识别准确性和可靠性,提出基于深度学习的暗光场景下图像优化方法。利用深度曲线估计网络自动调整暗光场景下图像的亮度,利用编码器-解码器架构和跳跃连接方式提取暗光图像中的特征;并在特征提取过程中引入坐标注意力机制,使网...
为了增强识别准确性和可靠性,提出基于深度学习的暗光场景下图像优化方法。利用深度曲线估计网络自动调整暗光场景下图像的亮度,利用编码器-解码器架构和跳跃连接方式提取暗光图像中的特征;并在特征提取过程中引入坐标注意力机制,使网络能够关注暗光图像中方向和位置上的关键信息;引入核选择模块和上采样操作去除噪声并恢复图像细节。实验结果表明,该方法不仅改善了暗光图像的视觉效果,还保留了图像的原始颜色信息和细节,暗光图像优化后的置信度均在93%以上。
展开更多
关键词
深度学习
暗光场景
zero
-
dce
模型
U-Net结构
CA
图像优化
原文传递
题名
基于改进Zero−DCE模型的矿井低照度图像增强方法
被引量:
2
1
作者
王轶玮
李晓宇
翁智
白凤山
机构
内蒙古大学电子信息工程学院
出处
《工矿自动化》
北大核心
2025年第2期57-64,99,共9页
基金
国家自然科学基金资助项目(52364017)
内蒙古自治区自然科学基金项目(2020MS06024,2023QN05023)
+1 种基金
2023年度自治区本级引进高层次人才科研支持项目(12000-15042321)
2023年高层次人才科研启动项目(10000-23112101/05)。
文摘
煤矿井下监控图像中存在噪声,清晰度低,且颜色和纹理信息缺失,采用基于机器学习的图像增强方法时还面临低照度−正常照度图像配对数据集采集困难的问题。提出一种改进零参考深度曲线估计(Zero−DCE)模型,并将其应用于矿井低照度图像增强。使用Leaky ReLU激活函数替换Zero−DCE模型中的ReLU激活函数,以加快模型收敛速度,提升低照度图像特征学习效率;在Zero−DCE模型浅层与深层网络之间的跳跃连接处引入卷积块注意力模块(CBAM),以提高模型对图像关键特征的表达能力;在浅层网络中引入非对称卷积块(ACB),以优化模型对局部图像特征的学习能力和细节特征的表现能力;在深层网络中采用串联卷积核(CCK),以降低模型参数量和计算量,缩短模型训练时间。采用LOL公共数据集和矿井自建数据集进行实验验证,结果表明:改进Zero−DCE模型的均方误差(MSE)、峰值信噪比(PSNR)、结构相似性(SSIM)、自然图像质量评估器(NIQE)和视觉信息保真度(VIF)整体上优于典型图像增强模型,在自建数据集上的MSE和NIQE较Zero−DCE模型分别降低16.25%和2.93%,PSNR,SSIM和VIF分别提高2.87%,1.87%和17.64%;图像增强视觉效果较好,可在提高图像亮度的同时有效保留细节纹理信息,降噪效果明显;对单幅图像的推理时间为0.138 s,可实现图像实时增强。
关键词
矿井低照度图像
图像增强
零参考深度曲线估计网络
zero
−
dce
模型
无监督学习
Keywords
underground low-light images
image enhancement
zero
-Reference Deep Curve Estimation network
zero
-
dce
model
unsupervised learning
分类号
TD67 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
基于深度学习的暗光场景下图像优化研究
2
作者
刘亮龙
罗梦贞
机构
桂林学院理工学院
出处
《激光杂志》
北大核心
2025年第8期123-127,共5页
基金
广西高校中青年教师科研基础能力提升项目(No.2022KY1575)。
文摘
为了增强识别准确性和可靠性,提出基于深度学习的暗光场景下图像优化方法。利用深度曲线估计网络自动调整暗光场景下图像的亮度,利用编码器-解码器架构和跳跃连接方式提取暗光图像中的特征;并在特征提取过程中引入坐标注意力机制,使网络能够关注暗光图像中方向和位置上的关键信息;引入核选择模块和上采样操作去除噪声并恢复图像细节。实验结果表明,该方法不仅改善了暗光图像的视觉效果,还保留了图像的原始颜色信息和细节,暗光图像优化后的置信度均在93%以上。
关键词
深度学习
暗光场景
zero
-
dce
模型
U-Net结构
CA
图像优化
Keywords
deep learning
dark scenes
zero dce model
U-Net structure
CA
image optimization
分类号
TN911.73 [电子电信—通信与信息系统]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于改进Zero−DCE模型的矿井低照度图像增强方法
王轶玮
李晓宇
翁智
白凤山
《工矿自动化》
北大核心
2025
2
在线阅读
下载PDF
职称材料
2
基于深度学习的暗光场景下图像优化研究
刘亮龙
罗梦贞
《激光杂志》
北大核心
2025
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部