期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进Zero−DCE模型的矿井低照度图像增强方法 被引量:2
1
作者 王轶玮 李晓宇 +1 位作者 翁智 白凤山 《工矿自动化》 北大核心 2025年第2期57-64,99,共9页
煤矿井下监控图像中存在噪声,清晰度低,且颜色和纹理信息缺失,采用基于机器学习的图像增强方法时还面临低照度−正常照度图像配对数据集采集困难的问题。提出一种改进零参考深度曲线估计(Zero−DCE)模型,并将其应用于矿井低照度图像增强... 煤矿井下监控图像中存在噪声,清晰度低,且颜色和纹理信息缺失,采用基于机器学习的图像增强方法时还面临低照度−正常照度图像配对数据集采集困难的问题。提出一种改进零参考深度曲线估计(Zero−DCE)模型,并将其应用于矿井低照度图像增强。使用Leaky ReLU激活函数替换Zero−DCE模型中的ReLU激活函数,以加快模型收敛速度,提升低照度图像特征学习效率;在Zero−DCE模型浅层与深层网络之间的跳跃连接处引入卷积块注意力模块(CBAM),以提高模型对图像关键特征的表达能力;在浅层网络中引入非对称卷积块(ACB),以优化模型对局部图像特征的学习能力和细节特征的表现能力;在深层网络中采用串联卷积核(CCK),以降低模型参数量和计算量,缩短模型训练时间。采用LOL公共数据集和矿井自建数据集进行实验验证,结果表明:改进Zero−DCE模型的均方误差(MSE)、峰值信噪比(PSNR)、结构相似性(SSIM)、自然图像质量评估器(NIQE)和视觉信息保真度(VIF)整体上优于典型图像增强模型,在自建数据集上的MSE和NIQE较Zero−DCE模型分别降低16.25%和2.93%,PSNR,SSIM和VIF分别提高2.87%,1.87%和17.64%;图像增强视觉效果较好,可在提高图像亮度的同时有效保留细节纹理信息,降噪效果明显;对单幅图像的推理时间为0.138 s,可实现图像实时增强。 展开更多
关键词 矿井低照度图像 图像增强 零参考深度曲线估计网络 zerodce模型 无监督学习
在线阅读 下载PDF
基于深度学习的暗光场景下图像优化研究
2
作者 刘亮龙 罗梦贞 《激光杂志》 北大核心 2025年第8期123-127,共5页
为了增强识别准确性和可靠性,提出基于深度学习的暗光场景下图像优化方法。利用深度曲线估计网络自动调整暗光场景下图像的亮度,利用编码器-解码器架构和跳跃连接方式提取暗光图像中的特征;并在特征提取过程中引入坐标注意力机制,使网... 为了增强识别准确性和可靠性,提出基于深度学习的暗光场景下图像优化方法。利用深度曲线估计网络自动调整暗光场景下图像的亮度,利用编码器-解码器架构和跳跃连接方式提取暗光图像中的特征;并在特征提取过程中引入坐标注意力机制,使网络能够关注暗光图像中方向和位置上的关键信息;引入核选择模块和上采样操作去除噪声并恢复图像细节。实验结果表明,该方法不仅改善了暗光图像的视觉效果,还保留了图像的原始颜色信息和细节,暗光图像优化后的置信度均在93%以上。 展开更多
关键词 深度学习 暗光场景 zero-dce模型 U-Net结构 CA 图像优化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部