Retrotransposons,a type of DNA fragment that can mobilize itself on genome,can generate genetic variations and develop for molecular markers based on the insertion polymorphism.Zinc finger proteins(ZNFs)are among the ...Retrotransposons,a type of DNA fragment that can mobilize itself on genome,can generate genetic variations and develop for molecular markers based on the insertion polymorphism.Zinc finger proteins(ZNFs)are among the most abundant proteins in eukaryotic animals,and their functions are extraordinarily diverse and particularly important in gene regulation.In the current study,bioinformatic prediction was performed to screen for retrotransposon insertion polymorphisms(RIPs)in six ZNF genes(ZNF2,ZNF3,ZNF7,ZNF8,ZNF10 and ZNF12).Six RIPs in these ZNFs,including one short interspersed nuclear element(SINE)RIP in intron 1 and one long interspersed nuclear element 1(L1)RIP in intron 3 of ZNF2,one SINE RIP in 5′flanking region and one SINE RIP in intron 2 of ZNF3,one SINE RIP in 3′UTR of ZNF7 and one L1 RIP in intron 2 of ZNF12,were discovered and their presence was confirmed by PCR.The impact of the SINE RIP in the first intron of ZNF2,which is close to the core promoter of ZNF2,on the gene activity was investigated by dual-luciferase assay in three cell lines.Our results showed that the SINE insertion in the intron 1 of ZNF2 repressed the core promoter activity extremely significantly(P<0.01)in cervical cancer cells and porcine primary embryonic fibroblasts(HeLa and PEF),thus SINE may act as a repressor.This SINE RIP also significantly(P<0.05)affected the corrected back fat thickness in Yorkshire pigs.The corrected back fat thickness of individuals with SINE insertion in the first intron of ZNF2 was significantly(P<0.05)higher than that of individuals without SINE insertion.In summary,our data suggested that RIPs play important roles in the genetic variations of these ZNF genes and SINE RIP in the intron 1 of ZNF2 may provide a useful molecular marker for the screening of fat deposition in the pig breeding.展开更多
The structural, electronic, and optical properties of rutile-, CaC12-, and PdF2-ZnF2 are calculated by the plane-wave pseudopotential method within the density functional theory. The calculated equilibrium lattice con...The structural, electronic, and optical properties of rutile-, CaC12-, and PdF2-ZnF2 are calculated by the plane-wave pseudopotential method within the density functional theory. The calculated equilibrium lattice constants are in reasonable agreement with the available experimental and other calculated results. The band structures show that the rutile-, CaCl2-, and PdF2-ZnF2 are all direct band insulator. The band gaps are 3.63, 3.62, and 3.36 eV, respectively. The contribution of the different bands was analyzed by the density of states. The Mulliken population analysis is performed. A mixture of covalent and weak ionic chemical bonding exists in ZnF2. Furthermore, in order to understand the optical properties of ZnF2, the dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, and optical reflectivity are also performed in the energy range from 0 to 30 eV. It is found that the main absorption parts locate in the UV region for ZnF2. This is the first quantitative theoretical prediction of the electronic and optical properties of ZnF2 compound, and it still awaits experimental confirmation.展开更多
Glasses based on Sm3+ doped zinc fluoroborate were synthesized and characterized. Formations of glasses were investigated in the 30 ZnF2-20 TeO2-(50-x)B2O3-x Sm2O3 matrix. Fast quenching and adequate heat treatment ar...Glasses based on Sm3+ doped zinc fluoroborate were synthesized and characterized. Formations of glasses were investigated in the 30 ZnF2-20 TeO2-(50-x)B2O3-x Sm2O3 matrix. Fast quenching and adequate heat treatment are required to prevent melt crystallization and to diminish thermal stress, which result in an efficient amorphous material. The differential scanning calorimetry(DSC), scanning electron microscopy(SEM), energy dispersive X-ray analysis(EDAX), X-ray photoelectron spectroscopy(XPS) were employed to record, calculate, measure and analyze the stability, density and refractive index of the glass samples with different concentrations of Sm3+ ranging between 0 to 2.5%(mass fraction). XPS result shows the values of core-level binding energy(Zn 3s, Sm 4d, Te 3d, B 1s, O 1s and F 1s) of(ZnF2-TeO2-B2O3-Sm2O3) glass matrix and indicates the good fusibility of the present glass samples. Density of the glass samples increases as dopant concentration increases and glass transition temperature tg ranges between 395 °C and 420 °C.展开更多
Zinc-ion capacitors(ZICs)are promising energy storage devices due to their balance between the energy and power densities inherited from Zn-ion batteries and supercapacitors,respectively.However,the low specific capac...Zinc-ion capacitors(ZICs)are promising energy storage devices due to their balance between the energy and power densities inherited from Zn-ion batteries and supercapacitors,respectively.However,the low specific capacitance of carbon cathode materials and the dendrite growth on Zn anode have set fatal drawbacks to their energy density and cycle stability.Herein,we demonstrate that,in 1 M Zn(CF_(3)SO_(3))_(2)/DMF(N,N-dimethylformamide)electrolyte,confining oxygen in carbon cathode materials via high-energy ball milling can synergistically introduce additional pseudocapacitance on the cathode side while suppressing the dendrite growth on Zn anode side,which jointly lead to high energy density(94 Wh kg^(−1)at 448 W kg^(−1))and long cycle stability of ZICs.The hydroxyl group in carbon cathode can be transformed to C–O–Zn together with the release of protons during the initial discharge,which in turn stimulates the defluorination of CF_(3)SO_(3)^(-)anions and formation of ZnF_(2)on both cathode and anode.The ZnF2 formed on the surface of the Zn anode suppresses the dendrite growth by regulating the Zn^(2+)deposition/stripping in a reticular structure,resulting in the excellent cycle stability.This work provides a facile strategy to rationally design and construct high energy and stable ZICs through engineering the oxygen-bearing functional groups in carbon cathode materials.展开更多
基金supported by the National Natural Science Foundation of China(32002146 and 31872977)the China Postdoctoral Science Foundation(2020M671630)+3 种基金the Jiangsu Postdoctoral Science Foundation of China(2021K221B)to Chen Caithe Jiangsu Agriculture Science and Technology Innovation Fund,China[CX(19)2016]the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe High-end Talent Support Program of Yangzhou University,China to Song Chengyi。
文摘Retrotransposons,a type of DNA fragment that can mobilize itself on genome,can generate genetic variations and develop for molecular markers based on the insertion polymorphism.Zinc finger proteins(ZNFs)are among the most abundant proteins in eukaryotic animals,and their functions are extraordinarily diverse and particularly important in gene regulation.In the current study,bioinformatic prediction was performed to screen for retrotransposon insertion polymorphisms(RIPs)in six ZNF genes(ZNF2,ZNF3,ZNF7,ZNF8,ZNF10 and ZNF12).Six RIPs in these ZNFs,including one short interspersed nuclear element(SINE)RIP in intron 1 and one long interspersed nuclear element 1(L1)RIP in intron 3 of ZNF2,one SINE RIP in 5′flanking region and one SINE RIP in intron 2 of ZNF3,one SINE RIP in 3′UTR of ZNF7 and one L1 RIP in intron 2 of ZNF12,were discovered and their presence was confirmed by PCR.The impact of the SINE RIP in the first intron of ZNF2,which is close to the core promoter of ZNF2,on the gene activity was investigated by dual-luciferase assay in three cell lines.Our results showed that the SINE insertion in the intron 1 of ZNF2 repressed the core promoter activity extremely significantly(P<0.01)in cervical cancer cells and porcine primary embryonic fibroblasts(HeLa and PEF),thus SINE may act as a repressor.This SINE RIP also significantly(P<0.05)affected the corrected back fat thickness in Yorkshire pigs.The corrected back fat thickness of individuals with SINE insertion in the first intron of ZNF2 was significantly(P<0.05)higher than that of individuals without SINE insertion.In summary,our data suggested that RIPs play important roles in the genetic variations of these ZNF genes and SINE RIP in the intron 1 of ZNF2 may provide a useful molecular marker for the screening of fat deposition in the pig breeding.
文摘The structural, electronic, and optical properties of rutile-, CaC12-, and PdF2-ZnF2 are calculated by the plane-wave pseudopotential method within the density functional theory. The calculated equilibrium lattice constants are in reasonable agreement with the available experimental and other calculated results. The band structures show that the rutile-, CaCl2-, and PdF2-ZnF2 are all direct band insulator. The band gaps are 3.63, 3.62, and 3.36 eV, respectively. The contribution of the different bands was analyzed by the density of states. The Mulliken population analysis is performed. A mixture of covalent and weak ionic chemical bonding exists in ZnF2. Furthermore, in order to understand the optical properties of ZnF2, the dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, and optical reflectivity are also performed in the energy range from 0 to 30 eV. It is found that the main absorption parts locate in the UV region for ZnF2. This is the first quantitative theoretical prediction of the electronic and optical properties of ZnF2 compound, and it still awaits experimental confirmation.
基金Project supported by a grant-in-aid for a scientific research from the Department of Atomic Energy(DAE)-Board of Research in Nuclear Science(BRNS)of the Government of India
文摘Glasses based on Sm3+ doped zinc fluoroborate were synthesized and characterized. Formations of glasses were investigated in the 30 ZnF2-20 TeO2-(50-x)B2O3-x Sm2O3 matrix. Fast quenching and adequate heat treatment are required to prevent melt crystallization and to diminish thermal stress, which result in an efficient amorphous material. The differential scanning calorimetry(DSC), scanning electron microscopy(SEM), energy dispersive X-ray analysis(EDAX), X-ray photoelectron spectroscopy(XPS) were employed to record, calculate, measure and analyze the stability, density and refractive index of the glass samples with different concentrations of Sm3+ ranging between 0 to 2.5%(mass fraction). XPS result shows the values of core-level binding energy(Zn 3s, Sm 4d, Te 3d, B 1s, O 1s and F 1s) of(ZnF2-TeO2-B2O3-Sm2O3) glass matrix and indicates the good fusibility of the present glass samples. Density of the glass samples increases as dopant concentration increases and glass transition temperature tg ranges between 395 °C and 420 °C.
基金financially supported by the Natural Science Foundation of Xiamen,China(No.3502Z202373070).
文摘Zinc-ion capacitors(ZICs)are promising energy storage devices due to their balance between the energy and power densities inherited from Zn-ion batteries and supercapacitors,respectively.However,the low specific capacitance of carbon cathode materials and the dendrite growth on Zn anode have set fatal drawbacks to their energy density and cycle stability.Herein,we demonstrate that,in 1 M Zn(CF_(3)SO_(3))_(2)/DMF(N,N-dimethylformamide)electrolyte,confining oxygen in carbon cathode materials via high-energy ball milling can synergistically introduce additional pseudocapacitance on the cathode side while suppressing the dendrite growth on Zn anode side,which jointly lead to high energy density(94 Wh kg^(−1)at 448 W kg^(−1))and long cycle stability of ZICs.The hydroxyl group in carbon cathode can be transformed to C–O–Zn together with the release of protons during the initial discharge,which in turn stimulates the defluorination of CF_(3)SO_(3)^(-)anions and formation of ZnF_(2)on both cathode and anode.The ZnF2 formed on the surface of the Zn anode suppresses the dendrite growth by regulating the Zn^(2+)deposition/stripping in a reticular structure,resulting in the excellent cycle stability.This work provides a facile strategy to rationally design and construct high energy and stable ZICs through engineering the oxygen-bearing functional groups in carbon cathode materials.