A ZM51 magnesium alloy joint with high intensity and thermal conductivity was fabricated using friction stir welding(FSW)followed by aging heat treatment(AG).During the FSW process,β_(1)'andβ_(2)'phases form...A ZM51 magnesium alloy joint with high intensity and thermal conductivity was fabricated using friction stir welding(FSW)followed by aging heat treatment(AG).During the FSW process,β_(1)'andβ_(2)'phases formed in the heat-affected zone(HAZ),yet new phases were absent in both the stirring zone(SZ)and thermal mechanical affected zone(TMAZ).After AG,numerousβ_(1)'andβ_(2)'phases emerged in the SZ and the TMAZ of the joint,while only theβ_(2)'phase precipitated in the HAZ.Due to precipitation strengthening,the average microhardness,yield strength and ultimate tensile strength of the joint reached up to 98%,94%and 88%those of the base metal(BM),respectively.Notably,basal slip{0001}<1120>,and twinning at 60°/<1010>and 86°/<1120>were more prevalent in TMAZ,contributing to the joint’s fracture.Furthermore,the precipitation ofβ_(1)'andβ_(2)'phases enhanced the joint’s thermal conductivity,averaging 121.7 W/(m·K),being 112%that of BM.展开更多
基金supported by the Key Research and Development Program of Shaanxi Province,China(No.2017ZDXM-GY-037)the National Natural Science Fund for Excellent Young Scholars,China(No.52222410)+3 种基金the National Natural Science Foundation of China(Key Program)(No.52034005)the National Natural Science Foundation of China(No.52227807)the National Key Research and Development Program of China(No.2021YFB3700902)the Shaanxi Province Qinchuangyuan“Scientist+Engineer”Team Program,China(No.2022KXJ-072).
文摘A ZM51 magnesium alloy joint with high intensity and thermal conductivity was fabricated using friction stir welding(FSW)followed by aging heat treatment(AG).During the FSW process,β_(1)'andβ_(2)'phases formed in the heat-affected zone(HAZ),yet new phases were absent in both the stirring zone(SZ)and thermal mechanical affected zone(TMAZ).After AG,numerousβ_(1)'andβ_(2)'phases emerged in the SZ and the TMAZ of the joint,while only theβ_(2)'phase precipitated in the HAZ.Due to precipitation strengthening,the average microhardness,yield strength and ultimate tensile strength of the joint reached up to 98%,94%and 88%those of the base metal(BM),respectively.Notably,basal slip{0001}<1120>,and twinning at 60°/<1010>and 86°/<1120>were more prevalent in TMAZ,contributing to the joint’s fracture.Furthermore,the precipitation ofβ_(1)'andβ_(2)'phases enhanced the joint’s thermal conductivity,averaging 121.7 W/(m·K),being 112%that of BM.