期刊文献+
共找到4,038篇文章
< 1 2 202 >
每页显示 20 50 100
Optimizing the Preparation Parameters of Nanocrystalline Zirconia for Catalytic Applications 被引量:2
1
作者 M.M.Abd El-Latif M.S.Showman +1 位作者 A.M.Ibrahim M.M.Soliman 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第5期565-573,共9页
Nanocrystalline zirconia powder with high surface area and high tetragonal phase percentage is prepared by the precipitation method using ammonium hydroxide as a precipitating agent. The pH of precipitation, preparati... Nanocrystalline zirconia powder with high surface area and high tetragonal phase percentage is prepared by the precipitation method using ammonium hydroxide as a precipitating agent. The pH of precipitation, preparation temperature and calcinations' temperature are optimized.Crystallite size, specific surface area, tetragonal phase percentage and the thermal stability of the prepared samples are identified by diferent characterization tools such as X-ray difraction(XRD), thermo gravimetric analysis(TGA), diferential scanning calorimetry(DSC), BET surface area, scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The optimum preparation parameters for obtaining nanocrystalline zirconia with high percentage of tetragonal phase and high surface area are pH 9, preparation temperature of 80℃ and calcinations' temperature of 400℃. The sample prepared under optimized conditions showed a high specific surface area of 179.2 m2/g, high tetragonal phase percentage of 81% and high catalytic activity(60%) for synthesis of butyl acetate ester. 展开更多
关键词 Tetragonal zirconia Nanocrystalline zirconia Precipitation synthesis Catalytic properties of zirconia Esterification with zirconia
原文传递
Investigating the Potential of Dental Zirconia Ceramics in Accelerator Couplers
2
作者 WANG Lin SUN Liepeng +1 位作者 WU Zhengrong JIANG Guodong 《原子核物理评论》 北大核心 2025年第2期241-249,共9页
With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences too... With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences took on a plurality of accelerator projects.Nevertheless,the stability of the coupler,a crucial system within the cavities of accelerators,has encountered certain difficulties.The alumina ceramics,which constitute the core component of the coupler,are increasingly prone to breakage and solder joint failures due to their inferior environmental adaptability,inadequate mechanical properties,and high gas emissions.Conversely,with the advancements in medical technology and materials science,zirconia ceramics have emerged as a prospective remedy for these problems.This type of ceramic is highly esteemed for its outstanding environmental adaptability,remarkable mechanical properties,and excellent high-temperature resistance,exhibiting extraordinary value in dental applications.This study investigates the use of zirconia ceramics in a 162.5 MHz 3-1/8"standard ceramic window,combining experimental data with finite element RF simulations and multi-physics analysis.A new coupler featuring a zirconia ceramic window was tested on a Quarter-Wave Resonator,demonstrating excellent alignment between electromagnetic simulations and measurement results.This reveals the substantial application potential and practical worth of the zirconia ceramic material in the context of accelerators. 展开更多
关键词 dental zirconia ceramics coupler ceramic window dielectric constant tangent loss multi-physics field
原文传递
Experimental Study on Peck Drilling of Micro-holes in Fully Sintered Zirconia Ceramics Using Diamond-Coated Drill Bits
3
作者 BIAN Rong ZHOU Junwei +3 位作者 DING Wenzheng KHAN Aqib Mashood XU Youfeng CHEN Ni 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期310-321,共12页
Zirconia(ZrO_(2))ceramic material has been widely applied to various fields due to its unique properties of high strength,high hardness,and excessive temperature resistance.However,the high-quality micro-hole machinin... Zirconia(ZrO_(2))ceramic material has been widely applied to various fields due to its unique properties of high strength,high hardness,and excessive temperature resistance.However,the high-quality micro-hole machining of zirconia ceramic material remains a significant challenge at present.In this study,experiments on peck drilling of 0.2 mm and 0.5 mm micro-holes in zirconia ceramics using diamond-coated drills are conducted.The characteristics of the force signal during the drilling process,the influence of drilling parameters on the drlling force and the chipping size at the hole exit,and features of the tool wear stages of the diamond coated drill are analyzed.Experimental results suggest that when machining micro-holes in zirconia ceramics,there is a positive correlation between the axial force and the size of the chipping at the exit.The axial force increases with the increase of the feed rate and the step distance,and it shows a trend of first increasing and next decreasing with the increase of the spindle speed.The wear of the drll bit has a significant impact on the quality of the hole exit.It is found that with the continuous drilling of seven holes,the axial force increases by 144.2%,and the size of edge chipping at the exit increases from about 20μm to more than 130μm.This study can provide some valuable references for improving the micro-hole processing quality of material. 展开更多
关键词 zirconia ceramics diamond-coated peck drilling CHIPPING tool wear
在线阅读 下载PDF
Novel zirconia ceramics for dental implant materials
4
作者 Maoyin Li Stevan Cokic +2 位作者 Bart Van Meerbeek Jef Vleugels Fei Zhang 《Journal of Materials Science & Technology》 2025年第7期97-108,共12页
Ceria-stabilized tetragonal zirconia(Ce-TZP)has become an interesting alternative for the widely used yttria-stabilized zirconia(Y-TZP),whereas efforts are needed to control its microstructure in order to im-prove the... Ceria-stabilized tetragonal zirconia(Ce-TZP)has become an interesting alternative for the widely used yttria-stabilized zirconia(Y-TZP),whereas efforts are needed to control its microstructure in order to im-prove the strength of Ce-TZP ceramics.In this work,CaO was used to co-dope Ce-TZP ceramics.More specifically,0.2-2.0 mol%Ca(NO_(3))_(3)·4H_(2)O precursor-based CaO was used to dope 10 mol%ceria-stabilized zirconia.Sintering was performed at 1300,1350,or 1400℃,which is lower than the temperatures commonly applied for zirconia ceramics.The microstructure and mechanical properties were investigated and correlated,revealing that 0.2 mol%CaO-doped CeO_(2)-stabilised zirconia sintered at 1350℃ exhibited a fully dense fine-grained tetragonal ZrO_(2) microstructure with high toughness(10.4 MPa m1/2)and biax-ial bending strength(1210±43 MPa),and a narrow strength distribution(weibull modulus of 32.5).1.5 and 2.0 mol% CaO-doping resulted in excellent biaxial bending strength but wider strength distribution and lower fracture resistance.The homogeneously distributed Ca(NO_(3))_(3)·4H_(2)O precursor prevented cubic zirconia-phase formation for CaO-doping up to 2.0 mol%.CaO-doped(≥0.2 mol%)10Ce-TZP sintered at 1350℃ also highly resisted hydrothermal degradation.Furthermore,CaO-doping enabled to make Ce-TZP ceramics as translucent as different commercially available 3Y-TZP ceramics,opening possibilities to use Ce-TZP for dental restorations. 展开更多
关键词 Ceria-stabilized zirconia Dental implant Transformation toughening Strength reliability Hydrothermal aging
原文传递
Thermal shock behavior of magnesia–spinel refractories:effect of calcia-stabilized zirconia
5
作者 Shi-zhen Wang Wei Yang +4 位作者 Bing-qiang Han Zheng Miao Yao-wu Wei Wen Yan Nan Li 《Journal of Iron and Steel Research International》 2025年第9期3069-3078,共10页
An experiment was conducted to assess the impact of fused calcia-stabilized zirconia micro-powder on the thermal shock behavior of magnesia–spinel refractories.The effects of calcia-stabilized zirconia on the microst... An experiment was conducted to assess the impact of fused calcia-stabilized zirconia micro-powder on the thermal shock behavior of magnesia–spinel refractories.The effects of calcia-stabilized zirconia on the microstructure evolution and properties of magnesia–spinel refractories were characterized by the high-temperature elastic modulus,thermal shock damage resistance parameters,retainment of elastic modulus after thermal shock,and scanning electron microscopy.The results indicated that the incorporation of calcia-stabilized zirconia improved the thermomechanical properties and thermal shock behavior of magnesia–spinel specimens.The hot modulus of rupture of magnesia–spinel specimens increased by 2.5-fold due to the incorporation of calcia-stabilized zirconia micro-powder.The presence of a martensitic phase transformation in partially unstable ZrO2 and thermal mismatches among various phases contributed to a controlled formation of microcracks.And the pinning effect caused by the calcia-stabilized zirconia particles surrounding the grain boundaries played a crucial role in preventing the propagation of microcracks.This phenomenon significantly bolstered the thermal shock stability of magnesia–spinel refractories,consequently prolonging their service life. 展开更多
关键词 MAGNESIA SPINEL Calcia-stabilized zirconia Thermal shock resistance Thermal shock damage resistance parameter
原文传递
A novel porous silica-zirconia coating for improving bond performance of dental zirconia 被引量:3
6
作者 Zhiwei SU Mingxing LI +4 位作者 Ling ZHANG Chaoyang WANG Leiqing ZHANG Jingqiu XU Baiping FU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第3期214-222,共9页
Objective:To coat a zirconia surface with silica-zirconia using a dip-coating technique and evaluate its effect on resin-zirconia shear bond strength(SBS).Methods:A silica-zirconia suspension was prepared and used to ... Objective:To coat a zirconia surface with silica-zirconia using a dip-coating technique and evaluate its effect on resin-zirconia shear bond strength(SBS).Methods:A silica-zirconia suspension was prepared and used to coat a zirconia surface using a dip-coating technique.One hundred and eighty-nine zirconia disks were divided into three groups according to their different surface treatments(polishing,sandblasting,and silica-zirconia coating).Scanning electron microscopy(SEM),energy dispersive X-ray(EDX),and X-ray diffraction(XRD)were used to analyze the differently treated zirconia surfaces.Different primer treatments(Monobond N,Z-PRIME Plus,and no primer)were also applied to the zirconia surfaces.Subsequently,180 composite resin cylinders(Filtek Z350)were cemented onto the zirconia disks with resin cement(RelyX Ultimate).The SBS was measured after water storage for 24 h or 6 months.The data were analyzed by two-way analysis of variance(ANOVA).Results:SEM and EDX showed that the silica-zirconia coating produced a porous layer with additional Si,and XRD showed that only tetragonal zirconia was on the silica-zirconia-coating surface.Compared with the control group,the resin-zirconia SBSs of the,andblasting group and silica-zirconia-coating group were significantly increased(P<0.05).The silica-zirconia coating followed by the application of Monobond N produced the highest SBS(P<0.05).Water aging significantly reduced the resin-zirconia SBS(P<0.05).Conclusions:Dip-coating with silica-zirconia might be a feasible way to improve resin-zirconia bonding. 展开更多
关键词 Silica-zirconia coating zirconia Bond performance Shear bond strength(SBS)
原文传递
Influence of characteristics of stabilized zirconia electrolyte on performance of cermet supported tubular SOFCs
7
作者 LI Changjiu LI Chengxin +2 位作者 XING Yazhe XIE Yingxin LONG Huiguo 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期273-279,共7页
Ni-Al_(2)O_(3)cermet supported tubular SOFC was fabricated by thermal spraying.Flame-sprayed Al_(2)O_(3)-Ni cermet coating plays dual roles of a support tube and an anode current collector.4.5mol.%yttria-stabilized zi... Ni-Al_(2)O_(3)cermet supported tubular SOFC was fabricated by thermal spraying.Flame-sprayed Al_(2)O_(3)-Ni cermet coating plays dual roles of a support tube and an anode current collector.4.5mol.%yttria-stabilized zirconia(YSZ)and 10mol.%scandia-stabilized zirconia(ScSZ)coatings were deposited by atmospheric plasma spraying(APS)as the electrolyte in present study.The electrical conductivity of electrolyte was measured using DC method.The post treatment was employed using nitrate solution infiltration to densify APS electrolyte layer for improvement of gas permeability.The electrical conductivity of electrolyte and the performance of single cell were investigated to optimize SOFC performance.The electrical conductivity of the as-sprayed YSZ and ScSZ coating is about 0.03 and 0.07 S·cm^(-1)at 1000℃,respectively.The ohmic polarization significantly influences the performance of SOFC.The maximum output power density at 1000℃increases from 0.47 to 0.76 W·cm^(-2)as the YSZ electrolyte thickness reduces from 100μm to 40μm.Using APS ScSZ coating of about 40μm as the electrolyte,the test cell presents a maximum power output density of over 0.89 W·cm^(-2)at 1000℃. 展开更多
关键词 solid oxide fuel cells(SOFCs) plasma spraying yttria-stabilized zirconia(YSZ) scandia-stabilized zirconia(ScSZ) coating
在线阅读 下载PDF
Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines 被引量:29
8
作者 Qiaomu Liu Shunzhou Huang Aijie He 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2814-2823,共10页
Composite ceramics thermal barrier coatings(TBCs) are widely used in the aero-engines field due to their excellent thermal insulation, which improves the service life and durability of the inherent hot components. The... Composite ceramics thermal barrier coatings(TBCs) are widely used in the aero-engines field due to their excellent thermal insulation, which improves the service life and durability of the inherent hot components. The most typical, successful and widely used TBCs material is yttria stabilized zirconia(YSZ). In this paper, fabrication methods, coating structures, materials, failure mechanism and major challenges of YSZ TBCs are introduced and reviewed. The research tendency is put forward as well. This review provides a good understanding of the YSZ TBCs and inspires researchers to discover versatile ideas to improve the TBCs systems. 展开更多
关键词 Composite ceramics Thermal barrier coatings AERO-ENGINE Yttria stabilized zirconia Phase stability Thermal conductivity Failure mechanism
原文传递
Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia 被引量:14
9
作者 Akikazu Shinya Harunori Gomi Akiyoshi Shinya 《International Journal of Oral Science》 SCIE CAS CSCD 2010年第1期28-34,共7页
Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconi... Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 μm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37℃ for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, B1, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP- containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. 展开更多
关键词 self-adhesive resin cement zirconia silica coating tribochemical treatment bond strength
在线阅读 下载PDF
A strategy to obtain a high-density and high-strength zirconia ceramic via ceramic injection molding by the modification of oleic acid 被引量:7
10
作者 Jia-xin Wen Tian-bin Zhu +2 位作者 Zhi-peng Xie Wen-bin Cao Wei Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第6期718-725,共8页
Despite its unique high efficiency and good environmental compatibility, the water-soluble binder system still encounters problems achieving a desired sintered part via ceramic injection molding because of the poor co... Despite its unique high efficiency and good environmental compatibility, the water-soluble binder system still encounters problems achieving a desired sintered part via ceramic injection molding because of the poor compatibility and the powder-binder segregation between ceramic powders and binders. The objective of this study was to obtain a sintered part with excellent properties by introducing a small quantity of oleic acid to the surface of zirconia powders before the mixing process. As opposed to many previous investigations that focused only on the rheological behavior and modification mechanism, the sintering behavior and densification process were systematically investigated in this study. With the modified powders, debound parts with a more homogeneous and smaller pore size distribution were fabricated. Also, a higher density and greater flexural strength were achieved in the sintered parts fabricated using the modified powders. 展开更多
关键词 ceramic materials zirconia injection MOLDING oleic acid SINTERING
在线阅读 下载PDF
Preparation and sintering properties of zirconia-mullite-corundum composites using fly ash and zircon 被引量:17
11
作者 马北越 厉英 +1 位作者 崔绍刚 翟玉春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第12期2331-2335,共5页
Zirconia-mullite-corundum composites were successfully prepared from fly ash,zircon and alumina powder by a reaction sintering process.The phase and microstructure evolutions of the composite synthesized at desired te... Zirconia-mullite-corundum composites were successfully prepared from fly ash,zircon and alumina powder by a reaction sintering process.The phase and microstructure evolutions of the composite synthesized at desired temperatures of 1 400,1 500 and 1 600°C for 4 h were characterized by X-ray diffractometry and scanning electronic microscopy,respectively.The influences of sintering temperature on shrinkage ratio,apparent porosity and bulk density of the synthesized composite were investigated.The formation process of the composites was discussed in detail.The results show that the zirconia-mullite-corundum composites with good sintering properties can be prepared at 1 600°C for 4 h.Zirconia particles can be homogeneously distributed in mullite matrix,and the zirconia particles are around 5μm.The formation process of zirconia-mullite-corundum composites consists of decomposition of zircon and mullitization process. 展开更多
关键词 zirconia MULLITE sintering properties reaction sintering process fly ash ZIRCON
在线阅读 下载PDF
Grain boundary segregation and its influences on ionic conduction properties of scandia doped zirconia electrolytes 被引量:6
12
作者 Qiannan Xue Xiaowei Huang +2 位作者 Jianxing Zhang He Zhang Zongyu Feng 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第6期645-651,共7页
Solid oxide fuel cell is a promising energy conversion system which converts chemical energy into electrical energy directly. Electrolyte is the key component and determines the working temperature. In this paper,ceri... Solid oxide fuel cell is a promising energy conversion system which converts chemical energy into electrical energy directly. Electrolyte is the key component and determines the working temperature. In this paper,ceria and scandia co-doped zirconia electrolytes sintered from 1300 to 1550 ℃ were chosen as research objects. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy were performed to characterize the ceramic samples. The effects of grain size and grain boundary element segregation on the electrical conductivity were focused. Electrochemical impedance spectroscopy was used to calculate the bulk, grain boundary and specific grain boundary conductivity. Results show that the bulk and grain boundary ionic conductivity increases with the increasing grain size.However, the specific grain boundary conductivity decreases with the increasing grain size. This is explained by the fact that Sc^(3+) is segregated at the grain boundary, which leads to higher oxygen vacancy concentration when sintered at lower temperature. 展开更多
关键词 Electrolytes CO-DOPED zirconia Grain size DOPANT SEGREGATION IONIC conductivity RARE earths
原文传递
Microstructure and thermal cycling behavior of nanostructured yttria partially stabilized zirconia (YSZ) thermal barrier coatings 被引量:8
13
作者 孙杰 张丽丽 赵丹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期198-201,共4页
Nanostructured yttria partially stabilized zirconia(YSZ) coatings were prepared by atmospheric plasma spraying(APS) using the conglomeration made by zirconia nanoparticle as the raw materials.The measurement methods,w... Nanostructured yttria partially stabilized zirconia(YSZ) coatings were prepared by atmospheric plasma spraying(APS) using the conglomeration made by zirconia nanoparticle as the raw materials.The measurement methods,which consisted of scanning electron microscopy(SEM),transmission electron microscopy(TEM) and thermal cycling behavior,were used to character the morphology,composition and thermal oxidation behavior of the powder and the coatings.From the results,it was shown that the YSZ coating was the laminar structure,and the elements distribution in the bond and top coat were well-proportioned.The YSZ coatings were composed of fine grains with size ranging from 30 to 110 nm.The laminar layers with columnar grains were surrounded with unmelted parts of the nanostructured powder and some equiaxed grains.In the as-sprayed nanostructured zirconia coatings,there existed pores that were less than 1 μm.The cracks were observed on some of the crystal border.The cyclic oxidation experiment showed that the nanostructured coating had longer thermal cycling lifetime to exhibit the promising thermal cyclic oxidation resistance.The failure of the nanostructured TBC was similar to the failure of conventional APS TBC. 展开更多
关键词 NANOSTRUCTURE yttria stabilized zirconia isothermal oxidation thermal barrier coatings rare earths
原文传递
Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics 被引量:5
14
作者 Iftikhar Ahmad Mohammad Islam +1 位作者 Nuha Al Habis Shahid Parvez 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第5期135-145,共11页
This work explains the synergistic contribution of graphene nanoplatelets(GNP)and zirconia ceramic nanoparticles(ZrO2)on the microstructure,mechanical performance and ballistic properties of the alumina(Al2O3)ceramic ... This work explains the synergistic contribution of graphene nanoplatelets(GNP)and zirconia ceramic nanoparticles(ZrO2)on the microstructure,mechanical performance and ballistic properties of the alumina(Al2O3)ceramic hybrid nanocomposites.Over the benchmarked monolithic alumina,the hotpressed hybrid nanocomposite microstructure demonstrated 68%lower grain size due to grain pinning phenomenon by the homogenously distributed reinforcing GNP(0.5 wt%)and zirconia(4 wt%)inclusions.Moreover,the hybrid nanocomposite manifested 155%better fracture toughness(KIC)and 17%higher microhardness as well as 88%superior ballistic trait over the monolithic alumina,respectively.The superior mechanical and ballistic performance of the hybrid nanocomposites was attributed to the combined role of zirconia nanoparticles and GNP nanomaterial in refining the microstructure and inducing idiosyncratic strengthening/toughening mechanisms.Extensive combined electron microscopy revealed complicated physical interlocking of the GNP into the microstructure as well as excellent bonding of the GNP with alumina at their interface in the hybrid nanocomposites.We also probed the efficiency of the pull-out and crack-bridging toughening mechanisms through proven quantitative methods.Based on the information extracted from the in-depth SEM/TEM investigation,we outlined schematic models for understating the reinforcing ability as well as toughening mechanisms in the hybrid nanocomposites and meticulously discussed.The hot-pressed hybrid nanocomposites owning high toughness and hardness may have applications in advanced armor technology. 展开更多
关键词 GRAPHENE ALUMINA zirconia TOUGHNESS HYBRID NANOCOMPOSITES
原文传递
Instrumented and Vickers Indentation for the Characterization of Stiffness,Hardness and Toughness of Zirconia Toughened Al_2O_3 and SiC Armor 被引量:7
15
作者 Aleksandra Nastic Ali Merati +3 位作者 Mariusz Bielawski Manon Bolduc Olaniyi Fakolujo Michel Nganbe 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第8期773-783,共11页
Instrumented and Vickers indentation testing and microstructure analysis were used to investigate zirconia toughened alumina (ZTA) and silicon carbide (SIC). Several equations were studied to relate the Vickers in... Instrumented and Vickers indentation testing and microstructure analysis were used to investigate zirconia toughened alumina (ZTA) and silicon carbide (SIC). Several equations were studied to relate the Vickers indentation hardness, Young's modulus and crack behavior to the fracture toughness. The frac- ture in SiC is unstable and occurs primarily by cleavage leading to a relatively low toughness of 3 MPa m1/2, which may be inappropriate for multi-hit capability. ZTA absorbs energy by plastic deformation, pore collapse, crack deviation and crack bridging and exhibits time dependent creep. With a relatively high toughness around 6.6 MPa m1/2, ZTA is promising for multi-hit capability. The higher accuracy of median equations in calculating the indentation fracture toughness and the relatively high c/a ratios above 2.5 suggest median type cracking for both SiC and ZTA. The Young's modulus of both ceramics was most accurately measured at lower indentation loads of about 0.5 kgf, while more accurate hardness and fracture toughness values were obtained at intermediate and at higher indentation loads beyond 5 kgf, respectively. A strong indentation size effect (ISE) was observed in both materials. The load independent hardness of SiC is 2563 HV, putting it far above the standard armor hardness requirement of 1500 HV that is barely met by ZTA. 展开更多
关键词 zirconia toughened alumina Silicon carbide ARMOR Vickers indentation fracture toughness Elastic modulus Vickers hardness
原文传递
Interface tuning of Cu+/CuO by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst 被引量:10
16
作者 Yujun Zhao Huanhuan Zhang +4 位作者 Yuxi Xu Shengnian Wang Yan Xu Shengping Wang Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期248-256,共9页
An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper ca... An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper catalyst and roles in DMO hydrogenation were investigated through various characterization tools,including N2 physical adsorption,XRD,H2-TPR,Methyl glycolate-TPD-MS,XPS,XAES as well.Compared with common ammonia evaporation and co-precipitation methods used in catalyst preparation,this HP method is found to effectively suppress the agglomeration and further size growth of copper nanoparticles by enhancing the interactions between copper and zirconia species.More importantly,uniform distribution of ZrO2 dopant is achieved due to the pseudo-homogeneous reactions in the mixing step of catalyst preparation.A proper amount of zirconium dopant helps achieve the desirable proportion of Cu+/(Cu++CuO)for surface copper species,especially promotes the production of Cu+species originated from Cu-ZrO2 species at the interface of copper and zirconia particles.In comparison with Cu+species formed from copper phyllosilicates reduction,the Cu+sites derived from Cu-ZrO2 species show higher adsorption ability of MG,an important intermediate species in ethylene glycol production.These adsorbed MG molecules further react with atomic hydrogen shifted from adjacent metallic copper surface,leading to a higher catalytic behavior.For the EG production via DMO hydrogenation,the turnover frequency(TOF)normalized by CuO species on CuZr/SiO2 catalyst is 1.8 times than that of traditional Cu/SiO2 counterpart.Due to the enhanced synergy effect between Cu+and Cuo active sites,a lower activation energy of ester hydrogenation on this ZrO2-doped Cu/SiO2 catalyst is believed to be responsible for the significant improvement. 展开更多
关键词 Copper zirconia HYDROGENATION Ethylene glycol
在线阅读 下载PDF
Preparation and film-growing mechanism of hydrous zirconia coated on TiO_2 被引量:4
17
作者 Jie Li Ti-chang Sun +3 位作者 Yong Wang Li-na Wang Jing-kui Qu Tao Qi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第5期660-667,共8页
To overcome the photochemical activity of rutile used as a pigment and improve its durability in application, hydrous zirconia-coated TiO2 was prepared by the precipitation method. High-resolution transmission electro... To overcome the photochemical activity of rutile used as a pigment and improve its durability in application, hydrous zirconia-coated TiO2 was prepared by the precipitation method. High-resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and surface structure of hydrous zirconia-coated TiO2. The ζ-potential and ultraviolet (UV) absorption of both coated and uncoated rutile were examined. The results show that hydrous zirconia can not only improve the durability but also raise the lightness. A suitable ZrO2 content of hydrous zirconia-coated TiO2 is about 1.0wt%, and a dense film on the surface of rutile can be formed with better pigmentary properties. Based on the thermodynamic analysis, the zirconia-coating process and the film growth mechanism were discussed. 展开更多
关键词 COATINGS RUTILE zirconia materials preparation mechanism
在线阅读 下载PDF
Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process 被引量:5
18
作者 徐家跃 雷秀云 +4 位作者 蒋新 何庆波 房永征 张道标 何雪梅 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期971-974,共4页
We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth ... We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400–1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi... 展开更多
关键词 yttria-stabilized cubic zirconia crystal growth skull melting process rare earths
在线阅读 下载PDF
Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol 被引量:4
19
作者 Joseph T. Kozlowski Robert J. Davis 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期58-64,共7页
The influences of adding sodium to zirconia on the acid-base properties of the surface and on the catalytic conversion of ethanol and acetone were investigated. The rates of ethanol dehydration, dehydrogenation and co... The influences of adding sodium to zirconia on the acid-base properties of the surface and on the catalytic conversion of ethanol and acetone were investigated. The rates of ethanol dehydration, dehydrogenation and coupling were evaluated in a fixed-bed flow reactor operating at temperatures from 613 to 673 K. The rate of acetone condensation was evaluated in the same reactor operating at 473-573 K. Addition of 1.0 wt% Na to ZrO2 decreased the rate of ethanol dehydration by more than an order of magnitude, which was consistent with a neutralization of acid sites evaluated by ammonia adsorption microcalorimetry. Addition of 1.0 wt% Na to ZrO2 also increased the base site density quantified by carbon dioxide adsorption microcalorimetry and the rate of acetone condensation. Although the rate of ethanol coupling was not increased by the addition of Na, the overall selectivity of ethanol to butanol was improved over the 1.0 wt% Na/ZrO2 sample because of the significant inhibition of ethanol dehydration. 展开更多
关键词 Guerbet reaction alcohol condensation zirconia MICROCALORIMETRY acetone condensation
在线阅读 下载PDF
Powder Characteristics on the Rheological Performance of Resin-based Zirconia Suspension for Stereolithography 被引量:7
20
作者 LI Xing-Bang ZHONG He +2 位作者 ZHANG Jing-Xian DUAN Yu-Sen JIANG Dong-Liang 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2020年第2期231-235,共5页
As for ceramic stereolithography technique,the preparation of suitable resin-based ceramic slurry is of primary importance.In this study,the effects of powder characteristics such as specific surface area,particle siz... As for ceramic stereolithography technique,the preparation of suitable resin-based ceramic slurry is of primary importance.In this study,the effects of powder characteristics such as specific surface area,particle size and distribution,particle morphology on the rheological behavior of zirconia resin-based suspensions were investigated intensively.Results show that the specific surface area of the powder is the most important factor affecting slurry viscosity.Choosing low specific surface area and quasi-spherical shaped powder is more likely to obtain low viscosity slurries.In addition,the influence of solid loading on the flow behavior were also studied using Krieger-Dougherty model.Zirconia samples with the relative density of(97.83±0.33)%were obtained after sintering at 1550℃.No obvious abnormal grain growth in the microstructure of the sintered body is observed.Results indicate that after the optimization of the processing parameters with the help of rheology characterization,complex-shaped high-quality zirconia parts can be obtained using the stereolithography technique. 展开更多
关键词 zirconia ceramic stereolithography SLURRY rheological properties
在线阅读 下载PDF
上一页 1 2 202 下一页 到第
使用帮助 返回顶部