二氧化氮气体是一种常见的大气污染物,对自然环境和人类健康造成严重的危害,开发检测该类有毒有害气体的高效检测设备势在必行。新型复合薄膜气体传感器可以在常温下对二氧化氮进行高选择性、高灵敏度检测,为自然环境和人类健康保驾护...二氧化氮气体是一种常见的大气污染物,对自然环境和人类健康造成严重的危害,开发检测该类有毒有害气体的高效检测设备势在必行。新型复合薄膜气体传感器可以在常温下对二氧化氮进行高选择性、高灵敏度检测,为自然环境和人类健康保驾护航。本工作采用化学沉淀法和超声法制备了多孔、高比表面积的ZIF8/还原氧化石墨烯(ZIF8/rGO)复合材料,以此为气敏材料构建NO_(2)传感器,并系统研究了其在室温下对NO_(2)的气敏性能,进一步探讨了ZIF8/rGO气敏传感器感应NO_(2)的可能机理。气敏实验结果表明:ZIF8/rGO气敏传感器对50×10^(-6) NO_(2)的响应达到34.77%,是纯rGO气敏传感器的3.2倍。ZIF8/rGO传感器在4个可逆循环测试中表现出较好的可重复性,RSD(Relative Standard Deviation)为3.9%。此外,ZIF8/rGO传感器表现出优秀的长期稳定性(RSD为2.5%)、选择性和低的检出限(3.8×10^(-8))。室温下灵敏感应NO_(2)的气敏性能主要归因于ZIF8的多孔结构和超大的比表面积以及rGO的优越性能。本工作将为ZIF8/rGO作为气敏材料检测有毒有害的NO_(2)气体提供新思路。展开更多
AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(...AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS),photoluminescence(PL)spectroscopy,electron spin resonance(ESR)spectroscopy,transient photocurrent and electrochemical impedance spectroscopy(EIS)were used to characterize binary composites.Tetracycline(TC)was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions,and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents.In addition,we further investigated the photocatalytic mechanism of the binary composite material AgVO_(3)/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst.The experimental results show that the degradation efficiency of 10%-AZ,prepared with a molar ratio of 10%AgVO_(3)and ZIF-8 to TC,was 75.0%.This indicates that the photocatalytic activity can be maintained even under a certain ionic content,making it a suitable photocatalyst for optimal use.In addition,the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.展开更多
The controlled introduction of oxygen vacancies(OVs)in photocatalysts has been demonstrated to be an efficient approach for improving the separation of photogenerated charge carriers,and thus,for enhancing the photoca...The controlled introduction of oxygen vacancies(OVs)in photocatalysts has been demonstrated to be an efficient approach for improving the separation of photogenerated charge carriers,and thus,for enhancing the photocatalytic performance of photocatalysts.In this study,a two‐step calcination method where ZIF‐8 was used as the precursor was explored for the synthesis of ZIF‐8‐derived ZnO nanoparticles with gradient distribution of OVs.Electron paramagnetic resonance measurements indicated that the concentration of OVs in the samples depended on the temperature treatment process.Ultraviolet–visible spectra supported that the two‐step calcined samples presented excellent light‐harvesting ability in the ultraviolet‐to‐visible light range.Moreover,it was determined that the two‐step calcined samples presented superior photocatalytic performance for the removal of NO,and inhibited the generation of NO2.These properties could be attributed to the contribution of the OVs present in the two‐step calcined samples to their photocatalytic performance.The electrons confined by the OVs could be transferred to O2 to generate superoxide radicals,which could oxidize NO to the final product,nitrate.In particular,the NO removal efficiency of Z 350‐400(which was a sample first calcined at 350℃ for 2 h,then at 400℃ for 1 h)was 1.5 and 4.6 times higher than that of Z 400(which was one‐step directly calcined at 400℃)and commercial ZnO,respectively.These findings suggested that OV‐containing metal oxides that derived from metal‐organic framework materials hold great promise as highly efficient photocatalysts for the removal of NO.展开更多
An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characteri...An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron microscopy,and Fourier‐transform infrared spectroscopy.After characterization,the MOF was used to activate peroxymonosulfate(PMS)for degradation of the refractory pollutant rhodamine B(RhB)in water.The composite prepared at a0.5:1mass ratio of Mn3O4to ZIF‐8possessed the highest catalytic activity with negligible Mn leaching.The maximum RhB degradation of approximately98%was achieved at0.4g/L0.5‐Mn/ZIF‐120,0.3g/L PMS,and10mg/L initial RhB concentration at a reaction temperature of23°C.The RhB degradation followed first‐order kinetics and was accelerated with increased0.5‐Mn/ZIF‐120and PMS dosages,decreased initial RhB concentration,and increased reaction temperature.Moreover,quenching tests indicated that?OH was the predominant radical involved in the RhB degradation;the?OH mainly originated from SO4??and,hence,PMS.Mn3O4/ZIF‐8also displayed good reusability for RhB degradation in the presence of PMS over five runs,with a RhB degradation efficiency of more than96%and Mn leaching of less than5%for each run.Based on these findings,a RhB degradation mechanism was proposed.展开更多
The rational design and preparation of promising cathode electrocatalysts with excellent activity and strong stability for metal-air batteries is a huge challenge.In this work,we innovate an approach of combining solv...The rational design and preparation of promising cathode electrocatalysts with excellent activity and strong stability for metal-air batteries is a huge challenge.In this work,we innovate an approach of combining solvothermal with high-temperature pyrolysis utilizing zeolitic imidazolate framework(ZIF)-8 and ZIF-67 as the template to synthesize a novel hybrid material of hierarchical porous yolk-shell Co-N-C polyhedron nanocatalysts engaged in graphene nanopocket(yolk-shell Co-N-C@GNP).The obtained catalyst exhibits prominent bifunctional electrocatalytic performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)in the alkaline condition,in which the half-wave potential is 0.86 V for ORR,and the over-potential for OER is 0.42 V at 10 mA·cm^(-2).The rechargeable aqueous Zn-air battery fabricated with yolk-shell Co-N-C@GNP cathode deliveries an open circuit voltage(OCV)of 1.60 V,a peak power density of 236.2 mW·cm^(-2),and excellent cycling stability over 94 h at 5 mA·cm^(-2).The quasi-solid-state Zn-air battery(ZAB)using yolk-shell Co-N-C@GNP displays a high OCV of 1.40 V and a small voltage gap of 0.88 V in continuous cycling tests at 2 mA·cm^(-2).This work provides a valuable thought to focus attention on the design of high-efficient bifunctional catalysts with hierarchical porous yolk-shell framework and high-density metal active sites for metal-air battery technologies.展开更多
文摘二氧化氮气体是一种常见的大气污染物,对自然环境和人类健康造成严重的危害,开发检测该类有毒有害气体的高效检测设备势在必行。新型复合薄膜气体传感器可以在常温下对二氧化氮进行高选择性、高灵敏度检测,为自然环境和人类健康保驾护航。本工作采用化学沉淀法和超声法制备了多孔、高比表面积的ZIF8/还原氧化石墨烯(ZIF8/rGO)复合材料,以此为气敏材料构建NO_(2)传感器,并系统研究了其在室温下对NO_(2)的气敏性能,进一步探讨了ZIF8/rGO气敏传感器感应NO_(2)的可能机理。气敏实验结果表明:ZIF8/rGO气敏传感器对50×10^(-6) NO_(2)的响应达到34.77%,是纯rGO气敏传感器的3.2倍。ZIF8/rGO传感器在4个可逆循环测试中表现出较好的可重复性,RSD(Relative Standard Deviation)为3.9%。此外,ZIF8/rGO传感器表现出优秀的长期稳定性(RSD为2.5%)、选择性和低的检出限(3.8×10^(-8))。室温下灵敏感应NO_(2)的气敏性能主要归因于ZIF8的多孔结构和超大的比表面积以及rGO的优越性能。本工作将为ZIF8/rGO作为气敏材料检测有毒有害的NO_(2)气体提供新思路。
文摘AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS),photoluminescence(PL)spectroscopy,electron spin resonance(ESR)spectroscopy,transient photocurrent and electrochemical impedance spectroscopy(EIS)were used to characterize binary composites.Tetracycline(TC)was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions,and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents.In addition,we further investigated the photocatalytic mechanism of the binary composite material AgVO_(3)/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst.The experimental results show that the degradation efficiency of 10%-AZ,prepared with a molar ratio of 10%AgVO_(3)and ZIF-8 to TC,was 75.0%.This indicates that the photocatalytic activity can be maintained even under a certain ionic content,making it a suitable photocatalyst for optimal use.In addition,the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.
文摘The controlled introduction of oxygen vacancies(OVs)in photocatalysts has been demonstrated to be an efficient approach for improving the separation of photogenerated charge carriers,and thus,for enhancing the photocatalytic performance of photocatalysts.In this study,a two‐step calcination method where ZIF‐8 was used as the precursor was explored for the synthesis of ZIF‐8‐derived ZnO nanoparticles with gradient distribution of OVs.Electron paramagnetic resonance measurements indicated that the concentration of OVs in the samples depended on the temperature treatment process.Ultraviolet–visible spectra supported that the two‐step calcined samples presented excellent light‐harvesting ability in the ultraviolet‐to‐visible light range.Moreover,it was determined that the two‐step calcined samples presented superior photocatalytic performance for the removal of NO,and inhibited the generation of NO2.These properties could be attributed to the contribution of the OVs present in the two‐step calcined samples to their photocatalytic performance.The electrons confined by the OVs could be transferred to O2 to generate superoxide radicals,which could oxidize NO to the final product,nitrate.In particular,the NO removal efficiency of Z 350‐400(which was a sample first calcined at 350℃ for 2 h,then at 400℃ for 1 h)was 1.5 and 4.6 times higher than that of Z 400(which was one‐step directly calcined at 400℃)and commercial ZnO,respectively.These findings suggested that OV‐containing metal oxides that derived from metal‐organic framework materials hold great promise as highly efficient photocatalysts for the removal of NO.
基金supported by the National Key Research and Development Program of China (2016YFB0700504)~~
文摘An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron microscopy,and Fourier‐transform infrared spectroscopy.After characterization,the MOF was used to activate peroxymonosulfate(PMS)for degradation of the refractory pollutant rhodamine B(RhB)in water.The composite prepared at a0.5:1mass ratio of Mn3O4to ZIF‐8possessed the highest catalytic activity with negligible Mn leaching.The maximum RhB degradation of approximately98%was achieved at0.4g/L0.5‐Mn/ZIF‐120,0.3g/L PMS,and10mg/L initial RhB concentration at a reaction temperature of23°C.The RhB degradation followed first‐order kinetics and was accelerated with increased0.5‐Mn/ZIF‐120and PMS dosages,decreased initial RhB concentration,and increased reaction temperature.Moreover,quenching tests indicated that?OH was the predominant radical involved in the RhB degradation;the?OH mainly originated from SO4??and,hence,PMS.Mn3O4/ZIF‐8also displayed good reusability for RhB degradation in the presence of PMS over five runs,with a RhB degradation efficiency of more than96%and Mn leaching of less than5%for each run.Based on these findings,a RhB degradation mechanism was proposed.
基金This study was supported by the National Natural Science Foundation of China(Nos.22008058 and 52074119)the Joint Funds of National Natural Science Foundation of China(No.U20A20280)+3 种基金the program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No.T2021010)the Joint supported by Hubei Provincial Natural Science Foundation and Huangshi of China(No.2022CFD039)the Postgraduate Innovative Research Project of Hubei Normal University(Nos.20220512 and 20220552)College Students innovation and entrepreneurship training program of Hubei Province(No.S202210513055).
文摘The rational design and preparation of promising cathode electrocatalysts with excellent activity and strong stability for metal-air batteries is a huge challenge.In this work,we innovate an approach of combining solvothermal with high-temperature pyrolysis utilizing zeolitic imidazolate framework(ZIF)-8 and ZIF-67 as the template to synthesize a novel hybrid material of hierarchical porous yolk-shell Co-N-C polyhedron nanocatalysts engaged in graphene nanopocket(yolk-shell Co-N-C@GNP).The obtained catalyst exhibits prominent bifunctional electrocatalytic performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)in the alkaline condition,in which the half-wave potential is 0.86 V for ORR,and the over-potential for OER is 0.42 V at 10 mA·cm^(-2).The rechargeable aqueous Zn-air battery fabricated with yolk-shell Co-N-C@GNP cathode deliveries an open circuit voltage(OCV)of 1.60 V,a peak power density of 236.2 mW·cm^(-2),and excellent cycling stability over 94 h at 5 mA·cm^(-2).The quasi-solid-state Zn-air battery(ZAB)using yolk-shell Co-N-C@GNP displays a high OCV of 1.40 V and a small voltage gap of 0.88 V in continuous cycling tests at 2 mA·cm^(-2).This work provides a valuable thought to focus attention on the design of high-efficient bifunctional catalysts with hierarchical porous yolk-shell framework and high-density metal active sites for metal-air battery technologies.