In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were inve...In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were investigated.The results showed that the three materials had satisfactory compatibility in the composite film.Addition of EC and zein effectively improved the mechanical properties,thermodynamic properties,surface hydrophilicity,oxygen permeability,and degradation properties of PLA films.When the ratio of PLA to EC was 3:7,the tensile strength and elongation at break reached maximum values of 16.6 MPa and 30.5%,respectively.Moreover,under different conditions,the composite film exhibited better degradability than the PLA film.The composite film with a 3:7 ratio of PLA to EC had the best performance,with a degradation rate of 21.75%after 84 days.Chilled fresh meat wrapped with the composite film showed significantly improved antioxidant,antibacterial,and water-holding properties.展开更多
Improving protein quality and grain yield traits coordinately is an important goal for crop breeding.To date,many protein-quality or grain-yield regulation genes have been identified.However,the genetic strategies int...Improving protein quality and grain yield traits coordinately is an important goal for crop breeding.To date,many protein-quality or grain-yield regulation genes have been identified.However,the genetic strategies integrating these genes in good-protein-quality and high-yield crop breeding practice are far from established.Here,we characterized the functions of the MADS domain-containing protein Zm MADS8 and Zea mays G protein gamma subunit 1(Zm GG1)in regulating protein quality and grain yield of maize.Zm MADS8 positively regulates zein protein accumulation and negatively regulates nonzein protein and lysine levels in kernels by interacting with Zm MADS47 to promote the transcriptional activation of Opaque2.Additionally,Zm MADS8 regulates starch content of kernels by targeting genes involved in starch biosynthesis.Zm GG1,a putative interactor of Zm MADS8,negatively regulates kernel number with a trade-off effect on kernel starch accumulation.The mads8;zmgg1 double mutant improved protein quality by attenuating zein biosynthesis and increasing essential lysine level,and increased grain yield by increasing kernel number,compensating for decreased starch biosynthesis.Our findings revealed the biological function of Zm MADS8 and Zm GG1 in regulating protein quality and yield related traits and suggested a genetic strategy by direct editing of Zm MADS8 and Zm GG1 to improve grain yield and protein quality simultaneously.展开更多
The prevalence of ulcerative colitis(UC)is increasing annually,while current non-targeted drugs for UC have limited effectiveness,easily relapsed,and serious side effects.Herein,curcumin(Cur)-loaded nanoparticle with ...The prevalence of ulcerative colitis(UC)is increasing annually,while current non-targeted drugs for UC have limited effectiveness,easily relapsed,and serious side effects.Herein,curcumin(Cur)-loaded nanoparticle with conlon-targeted property based on Mesona chinensis polysaccharides(MCP)was developed for the synergistic and targeted improvement of UC.Results show that MCP-zein nanoparticles(ZmNPs)have good encapsulation of Cur,targeted delivery of Cur to the colon,and prolonged its retention time.In vivo safety assessments have shown that ZmNPs have good safety and biocompatibility.As expected,Cur-ZmNPs effectively alleviated the symptoms of Dextran sulfate sodium(DSS)-induced UC by decreasing colonic inflammation by inhibiting the TLR4/MAPK pathway,regulating the levels of oxidative stress and immune homeostasis of UC mice.Oral administration of Cur-ZmNPs can reduce apoptosis of intestinal epithelial cells,alleviate colonic mucosal damage and repair intestinal barrier function.Cur-ZmNPs also had a positive effect on improving gut microbiota disorders and promoting the production of SCFAs.This study provides a novel strategy for synergistic alleviation of UC by MCP-based NPs loaded with food bioactives.展开更多
The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained...The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through highpressure homogenizer, were subjected to stability test under environmental stress conditions,that is, temperature cycling at 4 °C/40 °C for 6 cycles and centrifugal test at 3000 rpm for 10 min. Applying high-pressure homogenization after mechanical homogenization caused only a small additional decrease in emulsion droplet size. The droplet size of emulsions was influenced by the type of pectin used;emulsions using high methoxy pectin(HMP) were smaller than that using low methoxy pectin(LMP). This is due to a greater emulsifying property of HMP than LMP. The emulsions stabilized by HMP–zein showed good physical stability with lower percent creaming index than those using LMP, both before and after passing through high-pressure homogenizer. The stability of emulsions after passing through high-pressure homogenizer was slightly higher when using higher zein concentration, resulting from stronger pectin–zein complexes that could rearrange and adsorb onto the emulsion droplets.展开更多
Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan ...Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan composites. The asspun zein/chitosan/PVP composite fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile tests. SEM images indicated that increasing zein and PVP concentrations led to an increase in average diameters of the composite fibers. In order to improve stability in wet stage and mechanical properties, the composite fibrous membranes were crosslinked by hexamethylene diisocyanate (HDI). The crosslinked composite fibrous membranes showed slight morphological change after immersion in water for 24 h. Mechanical tests revealed that tensile strength and elongation at break of the composite fibrous membranes were increased after crosslinking, whereas Young's modulus was decreased.展开更多
Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemic...Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments. Results The prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution, hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P〉0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds. Conclusion The data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction.展开更多
Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure ...Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure and rheology of the solutions. We studied the structure and rheology of polyethylene oxide (PEO) and zein in 80% ethanol aqueous solutions and the resulted EFM. In solutions, zein with rod-like conformation tends to aggregate and form oligomer, the number of proteins in the oligomer spans from 2.5 to 55.2, while PEO always behaves like Gaussian chain in good solvent. Zein preferred to distribute along PEO chains in their mixed solutions, and the structures decomposed from small angle X-ray scattering have consistent relaxation spatial-temporal characteristics with rheological behaviors.Further, the aging of zein solutions enhanced shear thinning and resulted thicker fibers in EFM, which are attributed to the rod-like growth of zein aggregates. Aggregates in viscous media with long enough relaxation time are probably crucial for the formation of continuous electrospun fibers or ribbons. This study provides a clear correlation of the structure, rheology of solutions with the morphologies of EFM made up of proteins and polymers.展开更多
This study aims at the effects of an intake of low molecular weight corn peptides(LMCPs) prepared from zein on alcohol metablism in rats. LMCPs(1.0 g/kg body weight) in 15% ethanol(10 mL/kg body weight) were given to ...This study aims at the effects of an intake of low molecular weight corn peptides(LMCPs) prepared from zein on alcohol metablism in rats. LMCPs(1.0 g/kg body weight) in 15% ethanol(10 mL/kg body weight) were given to Wister rats by intragastric gavage. The assay of blood ethanol was conducted by using the enzyme based assay kit. The amino acid analysis was made with an amino acid analyzer. The data of the animal experiments showed that LMCPs could accelerate the metabolism of alcohol in rats. In the control group, the blood ethanol concentration reached the maximum level of (827.0±77.3) mg/L after ethanol loading for 30 min, then gradually decreased. In contrast, the blood ethanol concentration only reached (527.25±47.0) mg/L after 30 min in the group of LMCPs taken. These results indicate that LMCPs could decrease ethanol concentration in blood rapidly.展开更多
Aim Tissue engineering is a promising area with a broad range of applications in the fields of regenerative medicine and human health. The emergence of periodontal tissue engineering for clinical treatment of periodon...Aim Tissue engineering is a promising area with a broad range of applications in the fields of regenerative medicine and human health. The emergence of periodontal tissue engineering for clinical treatment of periodontal disease has opened a new therapeutic avenue. The choice of scaffold is crucial. This study was conducted to prepare zein scaffold and explore the suitability of zein and Shuanghuangbu for periodontal tissue engineering.Methodology A zein scaffold was made using the solvent casting/particulate leaching method with sodium chloride (NaC1) particles as the porogen. The physical properties of the zein scaffold were evaluated by observing its shape and determining its pore structure and porosity. Cytotoxicity testing of the scaffold was carried out via in vitro cell culture experiments, including a liquid extraction experi- ment and the direct contact assay. Also, the Chinese medicine Shuanghuangbu, as a growth factor, was diluted by scaffold extract into different concentrations. This Shuanghuangbu-scaffold extract was then added to periodontal ligament cells (PDLCs) in order to determineits effect on cell proliferation. Results The zein scaffold displayed a sponge-like structure with a high porosity and sufficient thickness. The porosity and pore size of the zein scaffold can be controlled by changing the porogen particles dosage and size. The porosity was up to 64.1%-78.0%. The pores were well-distributed, interconnected, and porous. The toxicity of the zein scaffold was graded as 0-1. Furthermore, PDLCs displayed full stretching and vigorous growth under scanning electronic microscope (SEM). Shuanghuangbu-scaffold extract could reinforce proliferation activity of PDLCs compared to the control group, especially at 100 μg.mL^-1 (P〈0.01). Conclusion A zein scaffold with high porosity, open pore wall structure, and good biocompatibility is conducive to the growth of PDLCs. Zein could be used as scaffold to repair periodontal tissue defects. Also, Shuanghuangbuscaffold extract can enhance the proliferation activity of PDLCs. Altogether, these findings provide the basis for in vivo testing on animals.展开更多
Zein,a class of alcohol-soluble prolamines in maize endosperm,is mainly composed of α-zein,β-zein,andγ-zein.It has been recognized as a structural protein for various gluten-free systems since it can form glutenlik...Zein,a class of alcohol-soluble prolamines in maize endosperm,is mainly composed of α-zein,β-zein,andγ-zein.It has been recognized as a structural protein for various gluten-free systems since it can form glutenlike viscoelastic network.The formation of viscoelastic zein network can make up for the structural defect of gluten-free doughs caused by the lack of gluten.To make the most of structural functionality of zein in glutenfree foods,it is important to clearly elucidate the fundamental properties of zein network.In this article,these properties have been discussed,analyzed and summarized from the relationship between protein network and structural functionality of zein,the feature and formation mechanism of zein network,factors affecting zein network and the applications of zein network in improving the quality of gluten-free food.In addition,this article also looks forward to potential research areas on zein network.展开更多
Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a pro...Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide effective protection for Li metal.The protective film with an integrated design of high flexibility,strong adhesion and high Li-ion transference number(0.80)is fabricated by incorporating denatured zein(corn protein)with polyethylene oxide(PEO)acting as an age nt for sustaining the denatured protein chains against refolding via the intermolecular interactions between them.Thus,a conformable zein-enabled protective film(zein@PEO)with simultaneous en hancement in flexibility,modulus and adhesion strength is gen erated to offer both functi ons of self-adapting and anion-anchoring abilities.The results show that the zein@PEO film is able to accommodate the volume change,reduce the side reactions,and homogenize the ion deposition.Benefiting from these significant properties/fu nctions,the Li/Cu cell with the zein@PEO film delivers prolonged cycle life for over 500 hours with stable performance.Paired with LiMn_(2)O_(4) cathode,the capacity,cycle stability and rate performance of the cell are remarkably improved as well,demonstrati ng the effectiveness in stabilizing Li metal batteries.展开更多
Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally...Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally occurring proteins to induce self-assembly behavior of protein by manipulating environmental parameters,providing opportunities to construct special and expected NPs.Zein and casein,the main proteins derived from corn and milk,are two examples of the most prevalently studied food proteins for nanoarchitectures in recent years.In this article,the compositions,structures,and physicochemical properties of these two proteins and casein derivatives are summarized as well as their interactions and characterizations.Strategies to fabricate zein-sodium caseinate based NPs are critically highlighted and illustrated.Particularly,applications such as encapsulation and delivery of bioactive compounds,producing food packaging for enhanced antioxidative and antimicrobial effects,and stabilization of emulsions to achieve fat replacement.Due to the imperative role of food proteins in diet composition,this review not only provides cutting-edge knowledge for nanoparticle construction but also opens new avenues for efficient utilization and exploitation of food proteins.展开更多
文摘In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were investigated.The results showed that the three materials had satisfactory compatibility in the composite film.Addition of EC and zein effectively improved the mechanical properties,thermodynamic properties,surface hydrophilicity,oxygen permeability,and degradation properties of PLA films.When the ratio of PLA to EC was 3:7,the tensile strength and elongation at break reached maximum values of 16.6 MPa and 30.5%,respectively.Moreover,under different conditions,the composite film exhibited better degradability than the PLA film.The composite film with a 3:7 ratio of PLA to EC had the best performance,with a degradation rate of 21.75%after 84 days.Chilled fresh meat wrapped with the composite film showed significantly improved antioxidant,antibacterial,and water-holding properties.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD0406804,2023ZD0402701)Major Project of Hubei Hongshan Laboratory(2022hszd019)First-Class Discipline Construction Funds of the College of Plant Science and Technology at Huazhong Agricultural University(2022ZK PY002)。
文摘Improving protein quality and grain yield traits coordinately is an important goal for crop breeding.To date,many protein-quality or grain-yield regulation genes have been identified.However,the genetic strategies integrating these genes in good-protein-quality and high-yield crop breeding practice are far from established.Here,we characterized the functions of the MADS domain-containing protein Zm MADS8 and Zea mays G protein gamma subunit 1(Zm GG1)in regulating protein quality and grain yield of maize.Zm MADS8 positively regulates zein protein accumulation and negatively regulates nonzein protein and lysine levels in kernels by interacting with Zm MADS47 to promote the transcriptional activation of Opaque2.Additionally,Zm MADS8 regulates starch content of kernels by targeting genes involved in starch biosynthesis.Zm GG1,a putative interactor of Zm MADS8,negatively regulates kernel number with a trade-off effect on kernel starch accumulation.The mads8;zmgg1 double mutant improved protein quality by attenuating zein biosynthesis and increasing essential lysine level,and increased grain yield by increasing kernel number,compensating for decreased starch biosynthesis.Our findings revealed the biological function of Zm MADS8 and Zm GG1 in regulating protein quality and yield related traits and suggested a genetic strategy by direct editing of Zm MADS8 and Zm GG1 to improve grain yield and protein quality simultaneously.
基金supported by the National Key Research and Development Program of China(2023YFF1104001)Natural Science Foundation of Jiangxi Province,China(20232BCD44003).
文摘The prevalence of ulcerative colitis(UC)is increasing annually,while current non-targeted drugs for UC have limited effectiveness,easily relapsed,and serious side effects.Herein,curcumin(Cur)-loaded nanoparticle with conlon-targeted property based on Mesona chinensis polysaccharides(MCP)was developed for the synergistic and targeted improvement of UC.Results show that MCP-zein nanoparticles(ZmNPs)have good encapsulation of Cur,targeted delivery of Cur to the colon,and prolonged its retention time.In vivo safety assessments have shown that ZmNPs have good safety and biocompatibility.As expected,Cur-ZmNPs effectively alleviated the symptoms of Dextran sulfate sodium(DSS)-induced UC by decreasing colonic inflammation by inhibiting the TLR4/MAPK pathway,regulating the levels of oxidative stress and immune homeostasis of UC mice.Oral administration of Cur-ZmNPs can reduce apoptosis of intestinal epithelial cells,alleviate colonic mucosal damage and repair intestinal barrier function.Cur-ZmNPs also had a positive effect on improving gut microbiota disorders and promoting the production of SCFAs.This study provides a novel strategy for synergistic alleviation of UC by MCP-based NPs loaded with food bioactives.
基金financially supported by the Research and Development Institute, Silpakorn University
文摘The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through highpressure homogenizer, were subjected to stability test under environmental stress conditions,that is, temperature cycling at 4 °C/40 °C for 6 cycles and centrifugal test at 3000 rpm for 10 min. Applying high-pressure homogenization after mechanical homogenization caused only a small additional decrease in emulsion droplet size. The droplet size of emulsions was influenced by the type of pectin used;emulsions using high methoxy pectin(HMP) were smaller than that using low methoxy pectin(LMP). This is due to a greater emulsifying property of HMP than LMP. The emulsions stabilized by HMP–zein showed good physical stability with lower percent creaming index than those using LMP, both before and after passing through high-pressure homogenizer. The stability of emulsions after passing through high-pressure homogenizer was slightly higher when using higher zein concentration, resulting from stronger pectin–zein complexes that could rearrange and adsorb onto the emulsion droplets.
基金supported by the National Natural Science Foundation of China(Nos.50573011 and 50673019)
文摘Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan composites. The asspun zein/chitosan/PVP composite fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile tests. SEM images indicated that increasing zein and PVP concentrations led to an increase in average diameters of the composite fibers. In order to improve stability in wet stage and mechanical properties, the composite fibrous membranes were crosslinked by hexamethylene diisocyanate (HDI). The crosslinked composite fibrous membranes showed slight morphological change after immersion in water for 24 h. Mechanical tests revealed that tensile strength and elongation at break of the composite fibrous membranes were increased after crosslinking, whereas Young's modulus was decreased.
基金financially supported by the National Natural Science Foundation of China,No.31070862Science and Technology Plan of Guangzhou,No.12C32071662+1 种基金Research Foundation of Guangdong Provincial Bureau of Traditional Chinese Medicine,No.2013113scientific research and cultivating Foundation of the First Clinical Medical College of Jinan University,No.2012103 and No.2013208
文摘Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments. Results The prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution, hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P〉0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds. Conclusion The data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction.
基金supported by the National Natural Science Foundation of China(Nos. 21374117 and 21774128)Major State Basic Research Development Program(No.2015CB655302)+1 种基金Key Research Program of Frontier Sciences (No. QYZDY-SSW-SLH027)One Hundred Person Project of the Chinese Academy of Sciences
文摘Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure and rheology of the solutions. We studied the structure and rheology of polyethylene oxide (PEO) and zein in 80% ethanol aqueous solutions and the resulted EFM. In solutions, zein with rod-like conformation tends to aggregate and form oligomer, the number of proteins in the oligomer spans from 2.5 to 55.2, while PEO always behaves like Gaussian chain in good solvent. Zein preferred to distribute along PEO chains in their mixed solutions, and the structures decomposed from small angle X-ray scattering have consistent relaxation spatial-temporal characteristics with rheological behaviors.Further, the aging of zein solutions enhanced shear thinning and resulted thicker fibers in EFM, which are attributed to the rod-like growth of zein aggregates. Aggregates in viscous media with long enough relaxation time are probably crucial for the formation of continuous electrospun fibers or ribbons. This study provides a clear correlation of the structure, rheology of solutions with the morphologies of EFM made up of proteins and polymers.
基金Supported by the Grant 94 35 4 6 - 3from Science and Technology Commission of Jilin Province
文摘This study aims at the effects of an intake of low molecular weight corn peptides(LMCPs) prepared from zein on alcohol metablism in rats. LMCPs(1.0 g/kg body weight) in 15% ethanol(10 mL/kg body weight) were given to Wister rats by intragastric gavage. The assay of blood ethanol was conducted by using the enzyme based assay kit. The amino acid analysis was made with an amino acid analyzer. The data of the animal experiments showed that LMCPs could accelerate the metabolism of alcohol in rats. In the control group, the blood ethanol concentration reached the maximum level of (827.0±77.3) mg/L after ethanol loading for 30 min, then gradually decreased. In contrast, the blood ethanol concentration only reached (527.25±47.0) mg/L after 30 min in the group of LMCPs taken. These results indicate that LMCPs could decrease ethanol concentration in blood rapidly.
基金supported by a grant (30873289) from the Chinese National Science Foundation
文摘Aim Tissue engineering is a promising area with a broad range of applications in the fields of regenerative medicine and human health. The emergence of periodontal tissue engineering for clinical treatment of periodontal disease has opened a new therapeutic avenue. The choice of scaffold is crucial. This study was conducted to prepare zein scaffold and explore the suitability of zein and Shuanghuangbu for periodontal tissue engineering.Methodology A zein scaffold was made using the solvent casting/particulate leaching method with sodium chloride (NaC1) particles as the porogen. The physical properties of the zein scaffold were evaluated by observing its shape and determining its pore structure and porosity. Cytotoxicity testing of the scaffold was carried out via in vitro cell culture experiments, including a liquid extraction experi- ment and the direct contact assay. Also, the Chinese medicine Shuanghuangbu, as a growth factor, was diluted by scaffold extract into different concentrations. This Shuanghuangbu-scaffold extract was then added to periodontal ligament cells (PDLCs) in order to determineits effect on cell proliferation. Results The zein scaffold displayed a sponge-like structure with a high porosity and sufficient thickness. The porosity and pore size of the zein scaffold can be controlled by changing the porogen particles dosage and size. The porosity was up to 64.1%-78.0%. The pores were well-distributed, interconnected, and porous. The toxicity of the zein scaffold was graded as 0-1. Furthermore, PDLCs displayed full stretching and vigorous growth under scanning electronic microscope (SEM). Shuanghuangbu-scaffold extract could reinforce proliferation activity of PDLCs compared to the control group, especially at 100 μg.mL^-1 (P〈0.01). Conclusion A zein scaffold with high porosity, open pore wall structure, and good biocompatibility is conducive to the growth of PDLCs. Zein could be used as scaffold to repair periodontal tissue defects. Also, Shuanghuangbuscaffold extract can enhance the proliferation activity of PDLCs. Altogether, these findings provide the basis for in vivo testing on animals.
文摘Zein,a class of alcohol-soluble prolamines in maize endosperm,is mainly composed of α-zein,β-zein,andγ-zein.It has been recognized as a structural protein for various gluten-free systems since it can form glutenlike viscoelastic network.The formation of viscoelastic zein network can make up for the structural defect of gluten-free doughs caused by the lack of gluten.To make the most of structural functionality of zein in glutenfree foods,it is important to clearly elucidate the fundamental properties of zein network.In this article,these properties have been discussed,analyzed and summarized from the relationship between protein network and structural functionality of zein,the feature and formation mechanism of zein network,factors affecting zein network and the applications of zein network in improving the quality of gluten-free food.In addition,this article also looks forward to potential research areas on zein network.
基金supported by NSF CBET 1929236the support on microscopy characterizations from the Franceschi Microscopy & Imaging Center at Washington State University.
文摘Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide effective protection for Li metal.The protective film with an integrated design of high flexibility,strong adhesion and high Li-ion transference number(0.80)is fabricated by incorporating denatured zein(corn protein)with polyethylene oxide(PEO)acting as an age nt for sustaining the denatured protein chains against refolding via the intermolecular interactions between them.Thus,a conformable zein-enabled protective film(zein@PEO)with simultaneous en hancement in flexibility,modulus and adhesion strength is gen erated to offer both functi ons of self-adapting and anion-anchoring abilities.The results show that the zein@PEO film is able to accommodate the volume change,reduce the side reactions,and homogenize the ion deposition.Benefiting from these significant properties/fu nctions,the Li/Cu cell with the zein@PEO film delivers prolonged cycle life for over 500 hours with stable performance.Paired with LiMn_(2)O_(4) cathode,the capacity,cycle stability and rate performance of the cell are remarkably improved as well,demonstrati ng the effectiveness in stabilizing Li metal batteries.
文摘Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally occurring proteins to induce self-assembly behavior of protein by manipulating environmental parameters,providing opportunities to construct special and expected NPs.Zein and casein,the main proteins derived from corn and milk,are two examples of the most prevalently studied food proteins for nanoarchitectures in recent years.In this article,the compositions,structures,and physicochemical properties of these two proteins and casein derivatives are summarized as well as their interactions and characterizations.Strategies to fabricate zein-sodium caseinate based NPs are critically highlighted and illustrated.Particularly,applications such as encapsulation and delivery of bioactive compounds,producing food packaging for enhanced antioxidative and antimicrobial effects,and stabilization of emulsions to achieve fat replacement.Due to the imperative role of food proteins in diet composition,this review not only provides cutting-edge knowledge for nanoparticle construction but also opens new avenues for efficient utilization and exploitation of food proteins.