Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image w...Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties.This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform(DWT),Z-transform(ZT)and Bidiagonal Singular Value Decomposition(BSVD).The original image is decomposed into 3-level DWT,and then,ZT is applied on the HH3 and HL3 sub-bands.The watermark image is encrypted using Arnold Cat Map.BSVD for the watermark and transformed original image were computed,and the watermark was embedded by modifying singular values of the host image with the singular values of the watermark image.Robustness of the proposed scheme was examined using standard test images and assessed against common signal processing and geometric attacks.Experiments indicated that the proposed method is transparent and highly robust.展开更多
Present study emphasizes the applicability of linear theory concept onto hilly watersheds. For this purpose, Z-transform technique was used to derive the instantaneous unit hydrograph (IUH) from the transfer function ...Present study emphasizes the applicability of linear theory concept onto hilly watersheds. For this purpose, Z-transform technique was used to derive the instantaneous unit hydrograph (IUH) from the transfer function of autoregressive and moving average (ARMA) type linear difference equation. Parameters of the ARMA type rainfall-runoff process were estimated by least-squares method. The derived IUH from Z-transform (i.e. ARMA-IUH) has been used to compute the hydrologic response i.e. direct runoff hydrograph (DRH). Fur-ther, the superiority of the proposed approach has been tested by comparing the results through the results obtained from the Nash-IUH. Analyzing the results obtained from ARMA-IUH and Nash-IUH for the two hilly watersheds of North Western Himalayas shows the applicability of the linear theory concept even in turbulent flow conditions which are frequently encountered in hilly terrains under similar conditions of flow.展开更多
The electromagnetic propagation through an inhomogeneous magnetized plasma slab is studied using the Z-transform formulation of the Finite-Difference Time-Domain(FDTD) method. The direction of electromagnetic propagat...The electromagnetic propagation through an inhomogeneous magnetized plasma slab is studied using the Z-transform formulation of the Finite-Difference Time-Domain(FDTD) method. The direction of electromagnetic propagation is parallel to the biasing magnetic filed. To validate the Z-transform algorithm, the reflection and transmission coefficients for the right-hand circularly polarized wave of the homogeneous magnetized plasma slab are computed by means of discrete Fourier transform. The comparison between the reflection and transmission coefficients of the homogeneous plasma slab and analytical values indicates that Z-transform algorithm is very accurate. When the plasma frequency varies according to the square root and parabolic relations, the reflection and transmission coefficients of the inhomogeneous magnetized plasma slab are computed.展开更多
In this work,we develop a novel computational method,referred to as SCT-Z-FDTD,which integrates the Z-transform finite-difference time-domain algorithm with a scale-compressed technique incorporating wave vectors.The ...In this work,we develop a novel computational method,referred to as SCT-Z-FDTD,which integrates the Z-transform finite-difference time-domain algorithm with a scale-compressed technique incorporating wave vectors.The proposed approach fa-cilitates accurate modeling of electromagnetic wave propagation through multi-layered anisotropic media,enabling precise evalua-tion of reflection and refraction coefficients over short time intervals.On first place,considering constitutive relationship between electromagnetic fields(E,H)and fluxes(D,B),Z-transform is employed to the anisotropic Maxwell’s curl equations for completing discrete-time form,and then the transverse wave vectors are exploited along a single direction to design the electromagnetic numerical differential process.After that,with the analysis corresponding flow chart,the plane waves are employed with different modes such as transverse electromagnetic,transverse electric,and transverse magnetic to detect the specific propagation.To further verify lower memory and higher efficiency,we select various multi-layered examples with anisotropies for executing the proposed method.Compared with the popular commercial software COMSOL,those data from multi-layered computation are quite consistent with the approximate trend the 2nd-order error convergence.展开更多
文摘Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties.This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform(DWT),Z-transform(ZT)and Bidiagonal Singular Value Decomposition(BSVD).The original image is decomposed into 3-level DWT,and then,ZT is applied on the HH3 and HL3 sub-bands.The watermark image is encrypted using Arnold Cat Map.BSVD for the watermark and transformed original image were computed,and the watermark was embedded by modifying singular values of the host image with the singular values of the watermark image.Robustness of the proposed scheme was examined using standard test images and assessed against common signal processing and geometric attacks.Experiments indicated that the proposed method is transparent and highly robust.
文摘Present study emphasizes the applicability of linear theory concept onto hilly watersheds. For this purpose, Z-transform technique was used to derive the instantaneous unit hydrograph (IUH) from the transfer function of autoregressive and moving average (ARMA) type linear difference equation. Parameters of the ARMA type rainfall-runoff process were estimated by least-squares method. The derived IUH from Z-transform (i.e. ARMA-IUH) has been used to compute the hydrologic response i.e. direct runoff hydrograph (DRH). Fur-ther, the superiority of the proposed approach has been tested by comparing the results through the results obtained from the Nash-IUH. Analyzing the results obtained from ARMA-IUH and Nash-IUH for the two hilly watersheds of North Western Himalayas shows the applicability of the linear theory concept even in turbulent flow conditions which are frequently encountered in hilly terrains under similar conditions of flow.
基金Supported by the National Natural Science Foundation of China (No.10375071 and No.60271027)Foundation of Key Lab of Electromagnetic Environment (No.51486020203 ZK1301)
文摘The electromagnetic propagation through an inhomogeneous magnetized plasma slab is studied using the Z-transform formulation of the Finite-Difference Time-Domain(FDTD) method. The direction of electromagnetic propagation is parallel to the biasing magnetic filed. To validate the Z-transform algorithm, the reflection and transmission coefficients for the right-hand circularly polarized wave of the homogeneous magnetized plasma slab are computed by means of discrete Fourier transform. The comparison between the reflection and transmission coefficients of the homogeneous plasma slab and analytical values indicates that Z-transform algorithm is very accurate. When the plasma frequency varies according to the square root and parabolic relations, the reflection and transmission coefficients of the inhomogeneous magnetized plasma slab are computed.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62101333)the Program for Excellent Scientific and Innovation Research Team(Grant No.2022AH010002)the 2024 Anhui Province University Science and Engineering Teachers’Internship Program in Enterprises(Grant No.2024jsqygz02).
文摘In this work,we develop a novel computational method,referred to as SCT-Z-FDTD,which integrates the Z-transform finite-difference time-domain algorithm with a scale-compressed technique incorporating wave vectors.The proposed approach fa-cilitates accurate modeling of electromagnetic wave propagation through multi-layered anisotropic media,enabling precise evalua-tion of reflection and refraction coefficients over short time intervals.On first place,considering constitutive relationship between electromagnetic fields(E,H)and fluxes(D,B),Z-transform is employed to the anisotropic Maxwell’s curl equations for completing discrete-time form,and then the transverse wave vectors are exploited along a single direction to design the electromagnetic numerical differential process.After that,with the analysis corresponding flow chart,the plane waves are employed with different modes such as transverse electromagnetic,transverse electric,and transverse magnetic to detect the specific propagation.To further verify lower memory and higher efficiency,we select various multi-layered examples with anisotropies for executing the proposed method.Compared with the popular commercial software COMSOL,those data from multi-layered computation are quite consistent with the approximate trend the 2nd-order error convergence.