期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
线性模型中有向关联测度的可压缩性
1
作者 郭建华 陈文远 马文卿 《黑龙江大学自然科学学报》 CAS 1998年第3期10-14,共5页
Wermuth(1989)讨论了齐一正态残差情形下线性模型中有向关联测度对离散背景变量的可压缩性问题。把相应结果推广到一般残差情形,其中背景变量可以是离散的,也可以是连续的;并且得到了各种有向关联测度可压缩性的充分必... Wermuth(1989)讨论了齐一正态残差情形下线性模型中有向关联测度对离散背景变量的可压缩性问题。把相应结果推广到一般残差情形,其中背景变量可以是离散的,也可以是连续的;并且得到了各种有向关联测度可压缩性的充分必要条件。 展开更多
关键词 可压缩性 线性模型 有向关联测度 充要条件
在线阅读 下载PDF
Collapsibility of odds ratios for a continuous outcome variable
2
作者 孟晓 王学丽 《Journal of Chongqing University》 CAS 2013年第2期81-84,共4页
The sign of an association measure between two varibles may be strongly affected and even be reversed after marginalization over a backgruoud variable, which is the well-known Yule-Simpson paradox.Odds ratios are stro... The sign of an association measure between two varibles may be strongly affected and even be reversed after marginalization over a backgruoud variable, which is the well-known Yule-Simpson paradox.Odds ratios are strongly collapsible over a background variable if they remain unchanged no matter how the background variable is partially pooled.In this paper, we firstly give some definitions and notations about odds ratios between a dichotomous explanatory variable and a continuous response variable.Then, we present conditions for simple collapsibility of odds ratios.Further, necessary and sufficient conditions are given for strong collapsibility of odds ratios for continuous outcome variable. 展开更多
关键词 COLLAPSIBILITY logistic distribution odds ratios yule-simpson paradox
在线阅读 下载PDF
On collapsibilities of Yule's measure
3
作者 郭建华 史宁中 耿直 《Science China Mathematics》 SCIE 2001年第7期829-836,共8页
Simpson' s paradox reminds people that the statistical inference in a low-dimensional space probably distorts the reality in a high one seriously.To study the paradox with respect to Yule's measure, this paper... Simpson' s paradox reminds people that the statistical inference in a low-dimensional space probably distorts the reality in a high one seriously.To study the paradox with respect to Yule's measure, this paper discusses simple collapsibility, strong collapsibility and consecutive collapsibility, and presents necessary and sufficient conditions of them.In fact, these conditions are of great importance for observational and experimental designs, eliminating confounding bias, categorizing discrete variables and so on. 展开更多
关键词 COLLAPSIBILITY conditional independence Simpson’ s paradox Yule’ s measure.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部