Ytterbium(Yb)-based mode-locked fiber lasers have undergone significant development and found widespread applications owing to their high efficiency,compact size,and low cost.However,these lasers typically operate wit...Ytterbium(Yb)-based mode-locked fiber lasers have undergone significant development and found widespread applications owing to their high efficiency,compact size,and low cost.However,these lasers typically operate within the 1030 to 1080 nm range,and expanding their operational wavelength is crucial for applications across various fields.We present the direct generation of a mode-locked laser at 1120.06 nm using an all-polarization-maintaining structure,establishing the longest wavelength reported to date for Yb-doped fiber-based mode-locked lasers.A stable picosecond pulse laser at 1120 nm was realized by combining high-concentration Yb-doping and phase-biasing technology within a figure-9 cavity configuration.The laser delivers a pulse duration of 6.20 ps,a spectral width of 0.19 nm centered at 1120.06 nm,and a repetition rate of 21.52 MHz and reaches a maximum output power of 1.39 W via a double-cladding Yb fiber power amplifier in a master oscillator power amplifier configuration.Furthermore,we present a theoretical investigation of the laser performance,with simulation results aligning well with experimental findings.In addition,a 560.06-nm ultrafast yellow-green laser was generated through frequency doubling in a lithium triborate crystal.We present an approach for long-wavelength Yb-doped mode-locked lasers,with the potential to advance the development and application of Yb-based fiber lasers.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.92477133)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2025A1515011662)+1 种基金the National Natural Science Foundation of Fujian Province(Grant No.2025J01060)the National Natural Science Foundation of Xiamen(Grant No.3502Z202571016).
文摘Ytterbium(Yb)-based mode-locked fiber lasers have undergone significant development and found widespread applications owing to their high efficiency,compact size,and low cost.However,these lasers typically operate within the 1030 to 1080 nm range,and expanding their operational wavelength is crucial for applications across various fields.We present the direct generation of a mode-locked laser at 1120.06 nm using an all-polarization-maintaining structure,establishing the longest wavelength reported to date for Yb-doped fiber-based mode-locked lasers.A stable picosecond pulse laser at 1120 nm was realized by combining high-concentration Yb-doping and phase-biasing technology within a figure-9 cavity configuration.The laser delivers a pulse duration of 6.20 ps,a spectral width of 0.19 nm centered at 1120.06 nm,and a repetition rate of 21.52 MHz and reaches a maximum output power of 1.39 W via a double-cladding Yb fiber power amplifier in a master oscillator power amplifier configuration.Furthermore,we present a theoretical investigation of the laser performance,with simulation results aligning well with experimental findings.In addition,a 560.06-nm ultrafast yellow-green laser was generated through frequency doubling in a lithium triborate crystal.We present an approach for long-wavelength Yb-doped mode-locked lasers,with the potential to advance the development and application of Yb-based fiber lasers.