The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau.Therefore,it is essential to accelerate advancements in photosynthesis,the fundamental process by which plants conv...The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau.Therefore,it is essential to accelerate advancements in photosynthesis,the fundamental process by which plants convert light energy into chemical energy,to further enhance crop yields.Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security.This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency.There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods,and this increase is accompanied by improved photosynthesis.We explore various aspects of the light reactions designed to enhance crop yield,including light harvest efficiency through smart canopy systems,expanding the absorbed light spectrum to include far-red light,optimizing non-photochemical quenching,and accelerating electron transport flux.At the same time,we investigate carbon reactions that can enhance crop yield,such as manipulating Rubisco activity,improving the Calvin-Benson-Bassham cycle,introducing CO_(2)concentrating mechanisms in C_(3)plants,and optimizing carbon allocation.These strategies could significantly impact crop yield enhancement and help bridge the yield gap.展开更多
Food insecurity continues to plague many rural communities across Africa.In Ghana and many neighbouring countries,smallholder farmers still struggle to make ends meet due to poor yields,outdated practices,and minimal ...Food insecurity continues to plague many rural communities across Africa.In Ghana and many neighbouring countries,smallholder farmers still struggle to make ends meet due to poor yields,outdated practices,and minimal institutional support.They face a plethora of challenges,including limited access to technology,weak extension systems,and a gap between scientific knowledge and everyday farming.展开更多
1.The key to achieving China’s dual carbon goals As pointed out in the CO_(2) Emissions in 2023 report released by the International Energy Agency,global carbon dioxide(CO_(2))emis-sions reached 37.4 billion tonnes i...1.The key to achieving China’s dual carbon goals As pointed out in the CO_(2) Emissions in 2023 report released by the International Energy Agency,global carbon dioxide(CO_(2))emis-sions reached 37.4 billion tonnes in 2023[1],setting a new record high.The increase in CO_(2) emissions has exacerbated global warm-ing and led to a series of global climate problems.China is a major emitter of CO_(2).展开更多
The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate dur...The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality.展开更多
Brackish water(BW)irrigation may cause soil quality deterioration and thereby a decrease in crop yields.Here we examined the impacts of applying gasification filter cake(GFC),intercropping with Portulaca oleracea(PO),...Brackish water(BW)irrigation may cause soil quality deterioration and thereby a decrease in crop yields.Here we examined the impacts of applying gasification filter cake(GFC),intercropping with Portulaca oleracea(PO),and their combination on soil quality,nutrient uptake by plants and tomato yields under BW irrigation.The treatments evaluated included(i)freshwater irrigation(Control),(ii)BW irrigation,(iii)GFC application under BW irrigation(BW+GFC),(iv)intercropping with PO under BW irrigation(BW+PO),and(v)the combined application of GFC and PO under BW irrigation(BW+PO+GFC).Overall,the use of BW for irrigation resulted in a decline in both soil quality(assessed by a soil quality index(SQI)integrating a wide range of key soil properties including salinity,nutrient availability and microbial activities)and crop yields.Nevertheless,when subjected to BW irrigation,the application of GFC successfully prevented soil salinity.Additionally,the intercropping of PO decreased the soil sodium adsorption ratio and improved the absorption of nutrients by plants.As a result,the BW+GFC+PO treatment generally showed higher tomato yield as compared to other BW-related treatments(i.e.BW,BW+GFC and BW+PO).Compared to BW,the BW+GFC+PO treatment had an average increase of 24.7% in the total fruit yield of four Cropping Seasons.Furthermore,the BW+GFC+PO treatment consistently exhibited the highest fruit quality index(FQI).Taken together,the combined application of GFC and PO is effective in promoting soil quality and crop yields under BW irrigation.展开更多
The Tarim River Basin(TRB)is a vast area with plenty of light and heat and is an important base for grain and cotton production in Northwest China.In the context of climate change,however,the increased frequency of ex...The Tarim River Basin(TRB)is a vast area with plenty of light and heat and is an important base for grain and cotton production in Northwest China.In the context of climate change,however,the increased frequency of extreme weather and climate events is having numerous negative impacts on the region's agricultural production.To better understand how unfavorable climatic conditions affect crop production,we explored the relationship of extreme weather and climate events with crop yields and phenology.In this research,ten indicators of extreme weather and climate events(consecutive dry days(CDD),min Tmax(TXn),max Tmin(TNx),tropical nights(TR),warm days(Tx90p),warm nights(Tn90p),summer days(SU),frost days(FD),very wet days(R95p),and windy days(WD))were selected to analyze the impact of spatial and temporal variations on the yields of major crops(wheat,maize,and cotton)in the TRB from 1990 to 2020.The three key findings of this research were as follows:extreme temperatures in southwestern TRB showed an increasing trend,with higher extreme temperatures at night,while the occurrence of extreme weather and climate events in northeastern TRB was relatively low.The number of FD was on the rise,while WD also increased in recent years.Crop yields were higher in the northeast compared with the southwest,and wheat,maize,and cotton yields generally showed an increasing trend despite an earlier decline.The correlation of extreme weather and climate events on crop yields can be categorized as extreme nighttime temperature indices(TNx,Tn90p,TR,and FD),extreme daytime temperature indices(TXn,Tx90p,and SU),extreme precipitation indices(CDD and R95p),and extreme wind(WD).By using Random Forest(RF)approach to determine the effects of different extreme weather and climate events on the yields of different crops,we found that the importance of extreme precipitation indices(CDD and R95p)to crop yield decreased significantly over time.As well,we found that the importance of the extreme nighttime temperature(TR and TNx)for the yields of the three crops increased during 2005-2020 compared with 1990-2005.The impact of extreme temperature events on wheat,maize,and cotton yields in the TRB is becoming increasingly significant,and this finding can inform policy decisions and agronomic innovations to better cope with current and future climate warming.展开更多
Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency...Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.Deep placement of nitrogen fertilizer(DPNF)is an agronomic measure that shows promise in addressing these issues.This review aims to offer a comprehensive understanding of DPNF,beginning with a succinct overview of its development and methodologies for implementation.Subsequently,the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.Additionally,it investigates the regulation and mechanism underlying the DPNF on crop development,yield,N use efficiency and greenhouse gas emissions.Finally,the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice.展开更多
Decision Support Tool(DST)enables farmers to make site-specific crop management decisions;however,comprehensive calibration can be both costly and time-consuming.This study assessed the production and economic benefit...Decision Support Tool(DST)enables farmers to make site-specific crop management decisions;however,comprehensive calibration can be both costly and time-consuming.This study assessed the production and economic benefits of two calibrations of the Nutrient Expert(NE)tool for rice in Sri Lanka’s Alfisols:the basic calibration(Nutrient Expert Sri Lanka 1,NESL1)and the comprehensive calibration(Nutrient Expert Sri Lanka 2,NESL2).NESL1 was developed by adapting the South Indian version of NE to local conditions,while NESL2 was an updated version,using three years of data from 71 farmer fields.展开更多
Rapid climate and cropland use changes in recent decades have posed major challenges to food security in China.Hainan Is-land is the only tropical island in China and is blessed with natural conditions for crop produc...Rapid climate and cropland use changes in recent decades have posed major challenges to food security in China.Hainan Is-land is the only tropical island in China and is blessed with natural conditions for crop production.This study first simulates the climate scenarios of Hainan Island for 2030,2040 and 2050 under the four Socio-economic Pathways(SSPs)based on the climate models in ScenarioMIP of Coupled Model Intercomparison Project Phase 6(CMIP6),and then simulates the land use scenarios of Hainan Island for 2030,2040 and 2050 based on the Cellular Automata(CA)-Markov model.Finally,based on the Global Agro-Ecological Zones(GAEZ)model,the rice potential yield in Hainan Island for 2030,2040 and 2050 are simulated,and the effects of future climate and cropland use changes on rice potential yields are investigated.The results show that:1)from 2020 to 2050,mean maximum temperature first decreases and then increases,while mean minimum temperature increase sharply followed by a leveling off under the four SSPs.Precipitation decreases and then increases under other three SSPs except SSP2-4.5.Net solar radiation increases continuously under SSP1-2.6,2-4.5,and 5-8.5,and has the lowest simulated values under SSP3-7.0.Mean wind speed increases continuously under SSP1-2.6,fluctuates more under SSP2-4.5 and SSP5-8.5,and increases slowly and then decreases sharply under SSP3-7.0.Relative humidity basically decreases continuously under the four SSPs.2)Areas of paddy field are 302.49 thousand,302.41 thousand and 302.71 thou-sand ha for 2030,2040 and 2050,respectively,all less than that in 2020.Paddy field is mainly converted into built-up land and wood-land.As for the conversion of other land types to paddy field,woodland is the main source.3)Under the effects of future climate and cropland use changes,the mean potential productions in Hainan Island under the four SSPs increase 1.17 million,1.13 million and 1.11 million t,respectively,and the mean potential yields increase 3873.21,3766.71 and 3672.38 kg/ha,respectively for the three periods.The largest increases in mean rice potential production and mean potential yield are 1.21 million t and 4008.00 kg/ha,1.16 million t and 3846.65 kg/ha,as well as 1.13 million t and 3732.75 kg/ha,respectively under SSP 3-7.0,indicating that SSP3-7.0 is the most suitable scenario for rice growth.This study could provide scientific basis for crop planting planning and agricultural policy adjustment.展开更多
Population growth and growing demand for livestock products produce large amounts of manure,which can be harnessed to maintain soil sustainability and crop productivity.However,the impacts of excessive manure applicat...Population growth and growing demand for livestock products produce large amounts of manure,which can be harnessed to maintain soil sustainability and crop productivity.However,the impacts of excessive manure application on crop yields,nitrogen(N)-cycling processes and microorganisms remain unknown.Here,we explored the effects of 20-year of excessive rates(18 and 27 Mg ha^(–1)yr^(–1))of pig manure application on peanut crop yields,soil nutrient contents,N-cycling processes and the abundance of N-cycling microorganisms in an acidic Ultisol in summer and winter,compared with none and a regular rate(9 Mg ha^(–1)yr^(–1))of pig manure application.Long-term excessive pig manure application,especially at the high-rate,significantly increased soil nutrient contents,the abundance of N-cycling functional genes,potential nitrification and denitrification activity,while it had a weaker effect on peanut yield and plant biomass.Compared with manure application,seasonality had a much weaker effect on N-cycling gene abundance.Random forest analysis showed that available phosphorus(AP)content was the primary predictor for N-cycling gene abundance,with significant and positive associations with all tested N-cycling genes.Our study clearly illustrated that excessive manure application would increase N-cycling gene abundance and potential N loss with relatively weak promotion of crop yields,providing significant implications for sustainable agriculture in the acidic Ultisols.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi...Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.展开更多
The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the curre...The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the current waste collection system in Guinea has proved inadequate, as moving garbage from point “A” to point “B” is tantamount to “moving the problem”. The aim of this experimental work is to demonstrate the cost-effectiveness and benefits of sustainable waste management. As part of this drive to valorize biodegradable waste, the Waste Management Research Center has undertaken a series of activities ranging from composting organic waste to testing compost on certain crop varieties. An experimental field of 8024 m2 was laid out and treated with 1500 Kg of fine compost in doses ranging from 2.5 to 5 T/ha. Two crop varieties, eggplant and chili, were tested. Compost application increased production yields: 15 to 21 tonnes of eggplant and 10.4 to 11.1 tonnes of chili per hectare. Growth rates compared with usual yields varied from 50% to 64% and from 11% to 17% for eggplant and chili, respectively. This study resulted in an optimum compost dose of 2.5 T/ha for this phase.展开更多
[Objective] Long-term (over 18 years) fertilization experiments were con- ducted to study the responses of crop yields and soil fertility to long-term nutrient lacking at Zhengzhou in China. [Method] The present stu...[Objective] Long-term (over 18 years) fertilization experiments were con- ducted to study the responses of crop yields and soil fertility to long-term nutrient lacking at Zhengzhou in China. [Method] The present study consisted of five treat- ments: 1 CK (no fertilizer or manure), (2) NP (nitrogen and phosphorus fertilizer applied), 31 NK (nitrogen and potassium fertilizer applied), 4 PK (phosphorus and potassium fertilizer applied) and :5 NPK (nitrogen, phosphorus and potassium fertil- izer applied). [Result] Lacking of nitrogen or phosphorus led to a low yield; however, there was no significant difference in grain yields between the NP and NPK treat- ments which maintained a higher yield. Receiving no phosphorus, soil available phosphorus content declined to about 2.5 mg/kg. The concentration of soil ex- changeable potassium remained constant at a level of 60 mg/kg under the treat- ments without potassium fertilizer addition. Soil potassium spontaneous supply ca- pacity fluctuated around 100%.[Conclusion] In fluvo-aquic soil, nitrogen and phos- phorus were two key limiting factors to grain yields, biomass and yield component factors of wheat and maize, while potassium was not. However, potassium defi- ciency may occur in the future if there was still no potassium fertilizer applied.展开更多
The aim of this study was to investigate the responses of frost dates to global warming and its influences on grain yields. In this study, based on the frost date series defined by daily minimum ground temperature, th...The aim of this study was to investigate the responses of frost dates to global warming and its influences on grain yields. In this study, based on the frost date series defined by daily minimum ground temperature, the spatial and temporal characteristics of first frost date (FFD), last frost date (LFD) and frost-free period (FFP) were analyzed. The impact of extending FFP on major crop yields was also studied. The results were as follows: FFD showed a significantly delaying trend of 2.2 d/10 y, and LFD presented an advancing trend of 2.4 d/10 y. FFP extended at a rate of 4.5 d/10 y due to the later FFD and earlier LFD. The most obvious trend of FFD was in westem Henan, while the most significant trend of LFD and FFP oc- curred in south central parts of the study area. However, in eestem region, the trends of FFD, LFD and FFP were not so obvious. Major crop yield showed a sig- nificant correlation with frost-free period for Henan during 1961-2013. The yields of grain, rice, wheat, and maize increased by 79.5, 90.0, 79.5 and 70.5 kg/hm2 with FFP extending by one day.展开更多
A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosp...A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosphorus runoff over a whole year were measured by using successional runoff water collection devices.The four experimental treatments were conventional fertilization(CK),drip fertigation(DF),conventional fertilization combined with plant hedgerows(C+H),and drip fertigation combined with plant hedgerows(D+H).The results from one year of continuous monitoring showed a significant positive correlation between precipitation and surface runoff discharge.Surface runoff discharge under the treatments without plant hedgerows totaled 15.86%of precipitation,while surface runoff discharge under the treatments with plant hedgerows totaled 12.82%of precipitation.Plant hedgerows reduced the number of runoff events and the amount of surface runoff.Precipitation is the main driving force for the loss of nitrogen and phosphorus in surface runoff,and fertilization is an important factor affecting the losses of nitrogen and phosphorus.In CK,approximately 7.36%of nitrogen and 2.63%of phosphorus from fertilization entered the surface water through runoff.Drip fertigation reduced the accumulation of nitrogen and phosphorus in the surface soil and lowered the runoff loss concentrations of total nitrogen(TN)and total phosphorus(TP).Drip fertigation combined with plant hedgerows significantly reduced the overall TN and TP losses by 45.38 and 36.81%,respectively,in comparison to the CK totals.Drip fertigation increased the vertical migration depth of nitrogen and phosphorus nutrients and reduced the accumulation of nitrogen and phosphorus in the surface soil,which increased the pear yield.The promotion of drip fertigation combined with plant hedgerows will greatly reduce the losses of nitrogen and phosphorus to runoff and maintain the high fruit yields in the intensive orchards of the Tai Lake Basin.展开更多
Climate change is a global environmental crisis, but there have been few studies of the effects of climate change on cereal yields on the Tibetan Plateau. We used data from meteorological stations and statistical year...Climate change is a global environmental crisis, but there have been few studies of the effects of climate change on cereal yields on the Tibetan Plateau. We used data from meteorological stations and statistical yearbooks to assess the impacts of climate change on cereal yields in Tibet. Three types of statistical models were selected: fixed-effects model, first-difference models, and linear detrending models. We analyzed the impacts of climate change(including the minimum temperature, precipitation, growing degree days and solar radiation) on cereal yields in Tibet from 1993 to 2017 at the county, prefecture-level city, and autonomous region scales. The results showed that the sensitivity of cereal yields in Tibet to temperature(minimum temperature and growing degree days) was greater than their sensitivity to precipitation and solar radiation. The joint impacts of climate variables were positive, but the sensitivity and significance varied in different regions. The impacts of minimum temperature, precipitation, and solar radiation were positive in all cities, apart from the negative impacts of growing degree days on cereal yields in Lhasa. The impacts of climate trends on cereal yields in Tibet were positive and the results were in the range of 1.5%–4.8%. Among the three types of model, the fixed-effects model was the most robust and the linear detrending model performed better than the first-difference model. The robustness of the first-difference model decreased after adding the interaction terms between different climate variables. Our findings will help in implementing more spatially targeted agricultural adaptations to cope with the impacts of climate change on the agro-ecosystem of the Tibetan Plateau.展开更多
The climatic factors affecting potato yields in western Guizhou were analyzed by using the way of grey correlation degree and principal component analysis.The average yield of potato from 1978 to 2008 in western Guizh...The climatic factors affecting potato yields in western Guizhou were analyzed by using the way of grey correlation degree and principal component analysis.The average yield of potato from 1978 to 2008 in western Guizhou was used as the sequence of numbers for reference.And the climatic factors including accumulated temperature(≥5 ℃),average temperature,precipitation,sunshine hours,daily average maximum temperature and daily average minimum temperature from March to August of potato at growth stage were used as the series for comparison.The results showed that the three integrative factors including temperature,moisture and light had a synergistic effect on potato production.The heat factor played a leading role in potato production with abundant light and ample water supply.Gray correlation analysis and principal component analysis could be used to estimate the influence factors of potato yield in western Guizhou.Very good agreement was found between the evaluation results obtained by the above-mentioned two methods.展开更多
This study explored the effects of cold plasma treatment on seed germination, plant growth, and peanut yield. Cold plasma treatment improved germination and seedling growth, and the 120 W treatment produced the best e...This study explored the effects of cold plasma treatment on seed germination, plant growth, and peanut yield. Cold plasma treatment improved germination and seedling growth, and the 120 W treatment produced the best effect. Germination potential and germination rate were markedly raised by 150% and 21%, respectively. Germination was accelerated and the uniformity of emergence improved. The apparent contact angle was decreased by 53%. Seedling shoot and root dry weights increased by 11% and 9%. Leaf area, leaf thickness, leaf nitrogen concentration, chlorophyll contents, and dry weight at the fruiting stage, together with plant height, stem diameter, and root dry weight at the mature stage were all markedly raised by the cold plasma treatment. The cold plasma treatment enhanced yield components, such as branch numbers per plant, pod numbers per plant, and 100 pod weights by 8%, 13%, and 9%, respectively, compared to the control. Furthermore, the yield improved by 10%. These results suggested that cold plasma treatment improved germination, plant growth, and yield, which might be due to the cold plasma increasing the leaf area, nitrogen concentrations, and chlorophyll contents.展开更多
A series of Tb^3+ mono-doped and Ce^3+-Tb^3+ co-doped Sr3Gd2(Si3O9)2 phosphors with high thermal stability and quantum yields were successfully prepared via the solid state reaction. The as-prepared Sr3Gd2(Si3O9)2:Tb^...A series of Tb^3+ mono-doped and Ce^3+-Tb^3+ co-doped Sr3Gd2(Si3O9)2 phosphors with high thermal stability and quantum yields were successfully prepared via the solid state reaction. The as-prepared Sr3Gd2(Si3O9)2:Tb^3+ samples showed broad excitation spectrum from 250 to 400 nm and presented characteristic emission transitions ^5D4→^7FJ(J=6, 5, 4, 3) of Tb^3+ under 313 nm excitation, which were located at about 488, 541, 584 and 620 nm. The emission intensities of Tb^3+ rose steadily in Sr3Gd2(Si3O9)2 host with the increase of Tb^3+ concentration even though Gd^3+ ions were completely replaced by Tb^3+ ions. The Ce^3+ ion as a sensitizer could efficiently improve the performance of Tb^3+ ion. First, with Ce^3+ co-doping, the excitation spectrum of Tb^3+ monitored at 541 nm showed a similar band that responds to the violet emission of Ce^3+ monitored at 416 nm. Second, the quantum yields of Sr3Gd2(Si3O9)2:Tb^3+ phosphors could be enhanced from 26.6% to 80.2% by co-doping Ce^3+. Finally, the co-doping of Ce^3+ was also effective to improve the thermal stability of Sr3Gd2(Si3O9)2:Tb^3+. As the temperature rose to 150 oC, the emission intensity of Tb^3+ remained at about 83.6% of that measured at room temperature, which was better than the commercial YAG:Ce phosphor in terms of their thermal quenching properties. These results indicated that the as-prepared Sr3Gd2(Si3O9)2:Tb^3+,Ce^3+ samples could be used as green emission phosphors for possible applications in near ultraviolet based WLEDs.展开更多
基金funded by CAS Project for Young Scientists in Basic Research(YSBR-072-8)National Key Research and Development Program of China(2021YFF1000203 and 2022YFF1001704)。
文摘The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau.Therefore,it is essential to accelerate advancements in photosynthesis,the fundamental process by which plants convert light energy into chemical energy,to further enhance crop yields.Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security.This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency.There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods,and this increase is accompanied by improved photosynthesis.We explore various aspects of the light reactions designed to enhance crop yield,including light harvest efficiency through smart canopy systems,expanding the absorbed light spectrum to include far-red light,optimizing non-photochemical quenching,and accelerating electron transport flux.At the same time,we investigate carbon reactions that can enhance crop yield,such as manipulating Rubisco activity,improving the Calvin-Benson-Bassham cycle,introducing CO_(2)concentrating mechanisms in C_(3)plants,and optimizing carbon allocation.These strategies could significantly impact crop yield enhancement and help bridge the yield gap.
文摘Food insecurity continues to plague many rural communities across Africa.In Ghana and many neighbouring countries,smallholder farmers still struggle to make ends meet due to poor yields,outdated practices,and minimal institutional support.They face a plethora of challenges,including limited access to technology,weak extension systems,and a gap between scientific knowledge and everyday farming.
基金supported by the National Key Research and Development Program of China(2022YFC3901103)the National Natural Science Foundation of China(22288102)the Science and Technology Plan Project of the Xinjiang Production and Con-struction Crops(XPCC)(2023AB017-01).
文摘1.The key to achieving China’s dual carbon goals As pointed out in the CO_(2) Emissions in 2023 report released by the International Energy Agency,global carbon dioxide(CO_(2))emis-sions reached 37.4 billion tonnes in 2023[1],setting a new record high.The increase in CO_(2) emissions has exacerbated global warm-ing and led to a series of global climate problems.China is a major emitter of CO_(2).
基金funded by the Jiangsu Key Research Program,China(BE2022338)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(23)3107)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(22KJB210004)the Jiangsu Province Agricultural Major Technology Collaborative Promotion Project,China(2022-ZYXT-04-1)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX23_3569)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality.
基金supported by the Key Research and Development Program of Ningxia(Grant No.2023BCF01046)。
文摘Brackish water(BW)irrigation may cause soil quality deterioration and thereby a decrease in crop yields.Here we examined the impacts of applying gasification filter cake(GFC),intercropping with Portulaca oleracea(PO),and their combination on soil quality,nutrient uptake by plants and tomato yields under BW irrigation.The treatments evaluated included(i)freshwater irrigation(Control),(ii)BW irrigation,(iii)GFC application under BW irrigation(BW+GFC),(iv)intercropping with PO under BW irrigation(BW+PO),and(v)the combined application of GFC and PO under BW irrigation(BW+PO+GFC).Overall,the use of BW for irrigation resulted in a decline in both soil quality(assessed by a soil quality index(SQI)integrating a wide range of key soil properties including salinity,nutrient availability and microbial activities)and crop yields.Nevertheless,when subjected to BW irrigation,the application of GFC successfully prevented soil salinity.Additionally,the intercropping of PO decreased the soil sodium adsorption ratio and improved the absorption of nutrients by plants.As a result,the BW+GFC+PO treatment generally showed higher tomato yield as compared to other BW-related treatments(i.e.BW,BW+GFC and BW+PO).Compared to BW,the BW+GFC+PO treatment had an average increase of 24.7% in the total fruit yield of four Cropping Seasons.Furthermore,the BW+GFC+PO treatment consistently exhibited the highest fruit quality index(FQI).Taken together,the combined application of GFC and PO is effective in promoting soil quality and crop yields under BW irrigation.
基金funded by the Tianshan Yingcai Program of the Xinjiang Uygur Autonomous Region(2022TSYCCX0038)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2022108)the Postdoctoral Fellowship Program of Chinese Postdoctoral Science Foundation(CPSF)(GZC20232962).
文摘The Tarim River Basin(TRB)is a vast area with plenty of light and heat and is an important base for grain and cotton production in Northwest China.In the context of climate change,however,the increased frequency of extreme weather and climate events is having numerous negative impacts on the region's agricultural production.To better understand how unfavorable climatic conditions affect crop production,we explored the relationship of extreme weather and climate events with crop yields and phenology.In this research,ten indicators of extreme weather and climate events(consecutive dry days(CDD),min Tmax(TXn),max Tmin(TNx),tropical nights(TR),warm days(Tx90p),warm nights(Tn90p),summer days(SU),frost days(FD),very wet days(R95p),and windy days(WD))were selected to analyze the impact of spatial and temporal variations on the yields of major crops(wheat,maize,and cotton)in the TRB from 1990 to 2020.The three key findings of this research were as follows:extreme temperatures in southwestern TRB showed an increasing trend,with higher extreme temperatures at night,while the occurrence of extreme weather and climate events in northeastern TRB was relatively low.The number of FD was on the rise,while WD also increased in recent years.Crop yields were higher in the northeast compared with the southwest,and wheat,maize,and cotton yields generally showed an increasing trend despite an earlier decline.The correlation of extreme weather and climate events on crop yields can be categorized as extreme nighttime temperature indices(TNx,Tn90p,TR,and FD),extreme daytime temperature indices(TXn,Tx90p,and SU),extreme precipitation indices(CDD and R95p),and extreme wind(WD).By using Random Forest(RF)approach to determine the effects of different extreme weather and climate events on the yields of different crops,we found that the importance of extreme precipitation indices(CDD and R95p)to crop yield decreased significantly over time.As well,we found that the importance of the extreme nighttime temperature(TR and TNx)for the yields of the three crops increased during 2005-2020 compared with 1990-2005.The impact of extreme temperature events on wheat,maize,and cotton yields in the TRB is becoming increasingly significant,and this finding can inform policy decisions and agronomic innovations to better cope with current and future climate warming.
基金funded by grants from the National Natural Science Foundation of China(32301947,32272220 and 32172120)the China Postdoctoral Science Foundation(2023M730909).
文摘Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.Deep placement of nitrogen fertilizer(DPNF)is an agronomic measure that shows promise in addressing these issues.This review aims to offer a comprehensive understanding of DPNF,beginning with a succinct overview of its development and methodologies for implementation.Subsequently,the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.Additionally,it investigates the regulation and mechanism underlying the DPNF on crop development,yield,N use efficiency and greenhouse gas emissions.Finally,the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice.
基金supported by the National Research Council of Sri Lanka(Grant No.NRC TO 16-07).
文摘Decision Support Tool(DST)enables farmers to make site-specific crop management decisions;however,comprehensive calibration can be both costly and time-consuming.This study assessed the production and economic benefits of two calibrations of the Nutrient Expert(NE)tool for rice in Sri Lanka’s Alfisols:the basic calibration(Nutrient Expert Sri Lanka 1,NESL1)and the comprehensive calibration(Nutrient Expert Sri Lanka 2,NESL2).NESL1 was developed by adapting the South Indian version of NE to local conditions,while NESL2 was an updated version,using three years of data from 71 farmer fields.
基金Under the auspices of Hainan Provincial Natural Science Foundation of China(No.321QN187,723RC466)Scientific Research Foundation of Hainan University(No.kyqd(sk)2135)Young Scholars Support Program of Hainan University(No.24QNFC-05)。
文摘Rapid climate and cropland use changes in recent decades have posed major challenges to food security in China.Hainan Is-land is the only tropical island in China and is blessed with natural conditions for crop production.This study first simulates the climate scenarios of Hainan Island for 2030,2040 and 2050 under the four Socio-economic Pathways(SSPs)based on the climate models in ScenarioMIP of Coupled Model Intercomparison Project Phase 6(CMIP6),and then simulates the land use scenarios of Hainan Island for 2030,2040 and 2050 based on the Cellular Automata(CA)-Markov model.Finally,based on the Global Agro-Ecological Zones(GAEZ)model,the rice potential yield in Hainan Island for 2030,2040 and 2050 are simulated,and the effects of future climate and cropland use changes on rice potential yields are investigated.The results show that:1)from 2020 to 2050,mean maximum temperature first decreases and then increases,while mean minimum temperature increase sharply followed by a leveling off under the four SSPs.Precipitation decreases and then increases under other three SSPs except SSP2-4.5.Net solar radiation increases continuously under SSP1-2.6,2-4.5,and 5-8.5,and has the lowest simulated values under SSP3-7.0.Mean wind speed increases continuously under SSP1-2.6,fluctuates more under SSP2-4.5 and SSP5-8.5,and increases slowly and then decreases sharply under SSP3-7.0.Relative humidity basically decreases continuously under the four SSPs.2)Areas of paddy field are 302.49 thousand,302.41 thousand and 302.71 thou-sand ha for 2030,2040 and 2050,respectively,all less than that in 2020.Paddy field is mainly converted into built-up land and wood-land.As for the conversion of other land types to paddy field,woodland is the main source.3)Under the effects of future climate and cropland use changes,the mean potential productions in Hainan Island under the four SSPs increase 1.17 million,1.13 million and 1.11 million t,respectively,and the mean potential yields increase 3873.21,3766.71 and 3672.38 kg/ha,respectively for the three periods.The largest increases in mean rice potential production and mean potential yield are 1.21 million t and 4008.00 kg/ha,1.16 million t and 3846.65 kg/ha,as well as 1.13 million t and 3732.75 kg/ha,respectively under SSP 3-7.0,indicating that SSP3-7.0 is the most suitable scenario for rice growth.This study could provide scientific basis for crop planting planning and agricultural policy adjustment.
基金supported by the National Natural Science Foundation of China(41930756 and 42077041)。
文摘Population growth and growing demand for livestock products produce large amounts of manure,which can be harnessed to maintain soil sustainability and crop productivity.However,the impacts of excessive manure application on crop yields,nitrogen(N)-cycling processes and microorganisms remain unknown.Here,we explored the effects of 20-year of excessive rates(18 and 27 Mg ha^(–1)yr^(–1))of pig manure application on peanut crop yields,soil nutrient contents,N-cycling processes and the abundance of N-cycling microorganisms in an acidic Ultisol in summer and winter,compared with none and a regular rate(9 Mg ha^(–1)yr^(–1))of pig manure application.Long-term excessive pig manure application,especially at the high-rate,significantly increased soil nutrient contents,the abundance of N-cycling functional genes,potential nitrification and denitrification activity,while it had a weaker effect on peanut yield and plant biomass.Compared with manure application,seasonality had a much weaker effect on N-cycling gene abundance.Random forest analysis showed that available phosphorus(AP)content was the primary predictor for N-cycling gene abundance,with significant and positive associations with all tested N-cycling genes.Our study clearly illustrated that excessive manure application would increase N-cycling gene abundance and potential N loss with relatively weak promotion of crop yields,providing significant implications for sustainable agriculture in the acidic Ultisols.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.
基金funded by the National Key Research and Development Program of China(2023YFD150050504)the Key Research and Development Program of Shandong Province,China(2022SFGC0301)the Strategic Priority Research Program of the Chinese Academy of Sciences-Development and Application Technology of Special Package Fertilizer for Improving Albic Soil(XDA28100203)。
文摘Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.
文摘The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the current waste collection system in Guinea has proved inadequate, as moving garbage from point “A” to point “B” is tantamount to “moving the problem”. The aim of this experimental work is to demonstrate the cost-effectiveness and benefits of sustainable waste management. As part of this drive to valorize biodegradable waste, the Waste Management Research Center has undertaken a series of activities ranging from composting organic waste to testing compost on certain crop varieties. An experimental field of 8024 m2 was laid out and treated with 1500 Kg of fine compost in doses ranging from 2.5 to 5 T/ha. Two crop varieties, eggplant and chili, were tested. Compost application increased production yields: 15 to 21 tonnes of eggplant and 10.4 to 11.1 tonnes of chili per hectare. Growth rates compared with usual yields varied from 50% to 64% and from 11% to 17% for eggplant and chili, respectively. This study resulted in an optimum compost dose of 2.5 T/ha for this phase.
基金Support by the Special Fund for Agro-scientific Research in the Public Interest of China(201203030-5)National Natural Science Foundation of China(41201288,41201255,31301284)+2 种基金Key Programs for Science and Technology Development of Henan Province(132102110068)Excellent Youth Science and Technology Foundation of Henan Academy of Agricultural Sciences(2013YQ15)JIRCAS-IARRP collaborative research:Estimation of the Present States of Fertilizer Use and Livestock Production and Their Environmental Load~~
文摘[Objective] Long-term (over 18 years) fertilization experiments were con- ducted to study the responses of crop yields and soil fertility to long-term nutrient lacking at Zhengzhou in China. [Method] The present study consisted of five treat- ments: 1 CK (no fertilizer or manure), (2) NP (nitrogen and phosphorus fertilizer applied), 31 NK (nitrogen and potassium fertilizer applied), 4 PK (phosphorus and potassium fertilizer applied) and :5 NPK (nitrogen, phosphorus and potassium fertil- izer applied). [Result] Lacking of nitrogen or phosphorus led to a low yield; however, there was no significant difference in grain yields between the NP and NPK treat- ments which maintained a higher yield. Receiving no phosphorus, soil available phosphorus content declined to about 2.5 mg/kg. The concentration of soil ex- changeable potassium remained constant at a level of 60 mg/kg under the treat- ments without potassium fertilizer addition. Soil potassium spontaneous supply ca- pacity fluctuated around 100%.[Conclusion] In fluvo-aquic soil, nitrogen and phos- phorus were two key limiting factors to grain yields, biomass and yield component factors of wheat and maize, while potassium was not. However, potassium defi- ciency may occur in the future if there was still no potassium fertilizer applied.
基金Funded by"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDA05090101,XDA05090104)China Global Change Research Program(2010CB950101,2012CB955403)+2 种基金Basic Research Project of the Ministry of Science and Technology(2011FY120300)Doctor Foundation of Xinyang Normal University(0201403)National Natural Science Foundation of China(41271124,41101549)~~
文摘The aim of this study was to investigate the responses of frost dates to global warming and its influences on grain yields. In this study, based on the frost date series defined by daily minimum ground temperature, the spatial and temporal characteristics of first frost date (FFD), last frost date (LFD) and frost-free period (FFP) were analyzed. The impact of extending FFP on major crop yields was also studied. The results were as follows: FFD showed a significantly delaying trend of 2.2 d/10 y, and LFD presented an advancing trend of 2.4 d/10 y. FFP extended at a rate of 4.5 d/10 y due to the later FFD and earlier LFD. The most obvious trend of FFD was in westem Henan, while the most significant trend of LFD and FFP oc- curred in south central parts of the study area. However, in eestem region, the trends of FFD, LFD and FFP were not so obvious. Major crop yield showed a sig- nificant correlation with frost-free period for Henan during 1961-2013. The yields of grain, rice, wheat, and maize increased by 79.5, 90.0, 79.5 and 70.5 kg/hm2 with FFP extending by one day.
基金supported by the International S&T Cooperation Program of Shanghai,China(20390731200)the Major Science and Technology Program for Water Pollution Control and Treatment,China(2017ZX07205)。
文摘A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosphorus runoff over a whole year were measured by using successional runoff water collection devices.The four experimental treatments were conventional fertilization(CK),drip fertigation(DF),conventional fertilization combined with plant hedgerows(C+H),and drip fertigation combined with plant hedgerows(D+H).The results from one year of continuous monitoring showed a significant positive correlation between precipitation and surface runoff discharge.Surface runoff discharge under the treatments without plant hedgerows totaled 15.86%of precipitation,while surface runoff discharge under the treatments with plant hedgerows totaled 12.82%of precipitation.Plant hedgerows reduced the number of runoff events and the amount of surface runoff.Precipitation is the main driving force for the loss of nitrogen and phosphorus in surface runoff,and fertilization is an important factor affecting the losses of nitrogen and phosphorus.In CK,approximately 7.36%of nitrogen and 2.63%of phosphorus from fertilization entered the surface water through runoff.Drip fertigation reduced the accumulation of nitrogen and phosphorus in the surface soil and lowered the runoff loss concentrations of total nitrogen(TN)and total phosphorus(TP).Drip fertigation combined with plant hedgerows significantly reduced the overall TN and TP losses by 45.38 and 36.81%,respectively,in comparison to the CK totals.Drip fertigation increased the vertical migration depth of nitrogen and phosphorus nutrients and reduced the accumulation of nitrogen and phosphorus in the surface soil,which increased the pear yield.The promotion of drip fertigation combined with plant hedgerows will greatly reduce the losses of nitrogen and phosphorus to runoff and maintain the high fruit yields in the intensive orchards of the Tai Lake Basin.
基金Strategic Priority Research Program of Chinese Academy of Sciences,No.XDA20040301,No.XDA20010202,No.XDA23100202National Natural Science Foundation of China+1 种基金No.41771111Youth Innovation Promotion Association,Chinese Academy of Sciences,No.2018071。
文摘Climate change is a global environmental crisis, but there have been few studies of the effects of climate change on cereal yields on the Tibetan Plateau. We used data from meteorological stations and statistical yearbooks to assess the impacts of climate change on cereal yields in Tibet. Three types of statistical models were selected: fixed-effects model, first-difference models, and linear detrending models. We analyzed the impacts of climate change(including the minimum temperature, precipitation, growing degree days and solar radiation) on cereal yields in Tibet from 1993 to 2017 at the county, prefecture-level city, and autonomous region scales. The results showed that the sensitivity of cereal yields in Tibet to temperature(minimum temperature and growing degree days) was greater than their sensitivity to precipitation and solar radiation. The joint impacts of climate variables were positive, but the sensitivity and significance varied in different regions. The impacts of minimum temperature, precipitation, and solar radiation were positive in all cities, apart from the negative impacts of growing degree days on cereal yields in Lhasa. The impacts of climate trends on cereal yields in Tibet were positive and the results were in the range of 1.5%–4.8%. Among the three types of model, the fixed-effects model was the most robust and the linear detrending model performed better than the first-difference model. The robustness of the first-difference model decreased after adding the interaction terms between different climate variables. Our findings will help in implementing more spatially targeted agricultural adaptations to cope with the impacts of climate change on the agro-ecosystem of the Tibetan Plateau.
基金Supported by Meteorological Science and Technology Poverty Alleviation Project of the China Meteorological Administration(CMATG2009FP08)Open-end Funds of Meteorological Bureau of Guizhou Province(Meteorological Research Cooperation in Guizhou No.KF[2008]01)Special Program for Provincial and Local Technological Collaboration Agreement on Potatoes(52020-2009-01-01)
文摘The climatic factors affecting potato yields in western Guizhou were analyzed by using the way of grey correlation degree and principal component analysis.The average yield of potato from 1978 to 2008 in western Guizhou was used as the sequence of numbers for reference.And the climatic factors including accumulated temperature(≥5 ℃),average temperature,precipitation,sunshine hours,daily average maximum temperature and daily average minimum temperature from March to August of potato at growth stage were used as the series for comparison.The results showed that the three integrative factors including temperature,moisture and light had a synergistic effect on potato production.The heat factor played a leading role in potato production with abundant light and ample water supply.Gray correlation analysis and principal component analysis could be used to estimate the influence factors of potato yield in western Guizhou.Very good agreement was found between the evaluation results obtained by the above-mentioned two methods.
基金supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAD05B04)National Natural Science Foundation of China(No.41201241)+1 种基金“Strategic Priority Research Program”of the Chinese Academy of Sciences(No.XDB15030301)Jiangsu Province Science and Technology Support Program(No.BE2013452)
文摘This study explored the effects of cold plasma treatment on seed germination, plant growth, and peanut yield. Cold plasma treatment improved germination and seedling growth, and the 120 W treatment produced the best effect. Germination potential and germination rate were markedly raised by 150% and 21%, respectively. Germination was accelerated and the uniformity of emergence improved. The apparent contact angle was decreased by 53%. Seedling shoot and root dry weights increased by 11% and 9%. Leaf area, leaf thickness, leaf nitrogen concentration, chlorophyll contents, and dry weight at the fruiting stage, together with plant height, stem diameter, and root dry weight at the mature stage were all markedly raised by the cold plasma treatment. The cold plasma treatment enhanced yield components, such as branch numbers per plant, pod numbers per plant, and 100 pod weights by 8%, 13%, and 9%, respectively, compared to the control. Furthermore, the yield improved by 10%. These results suggested that cold plasma treatment improved germination, plant growth, and yield, which might be due to the cold plasma increasing the leaf area, nitrogen concentrations, and chlorophyll contents.
基金Project supported by National Natural Science Foundation of China(21571162)the Guangdong Province Enterprise-University-Academy Collaborative Project(2012B091100474)
文摘A series of Tb^3+ mono-doped and Ce^3+-Tb^3+ co-doped Sr3Gd2(Si3O9)2 phosphors with high thermal stability and quantum yields were successfully prepared via the solid state reaction. The as-prepared Sr3Gd2(Si3O9)2:Tb^3+ samples showed broad excitation spectrum from 250 to 400 nm and presented characteristic emission transitions ^5D4→^7FJ(J=6, 5, 4, 3) of Tb^3+ under 313 nm excitation, which were located at about 488, 541, 584 and 620 nm. The emission intensities of Tb^3+ rose steadily in Sr3Gd2(Si3O9)2 host with the increase of Tb^3+ concentration even though Gd^3+ ions were completely replaced by Tb^3+ ions. The Ce^3+ ion as a sensitizer could efficiently improve the performance of Tb^3+ ion. First, with Ce^3+ co-doping, the excitation spectrum of Tb^3+ monitored at 541 nm showed a similar band that responds to the violet emission of Ce^3+ monitored at 416 nm. Second, the quantum yields of Sr3Gd2(Si3O9)2:Tb^3+ phosphors could be enhanced from 26.6% to 80.2% by co-doping Ce^3+. Finally, the co-doping of Ce^3+ was also effective to improve the thermal stability of Sr3Gd2(Si3O9)2:Tb^3+. As the temperature rose to 150 oC, the emission intensity of Tb^3+ remained at about 83.6% of that measured at room temperature, which was better than the commercial YAG:Ce phosphor in terms of their thermal quenching properties. These results indicated that the as-prepared Sr3Gd2(Si3O9)2:Tb^3+,Ce^3+ samples could be used as green emission phosphors for possible applications in near ultraviolet based WLEDs.