期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于轻量化YOLOv8-FasterBlock模型的云南小粒咖啡生豆分级方法
1
作者 杨红欣 陈越 +6 位作者 裴国权 钱雪英 李沛瑶 朱才英 夏迁 刘自高 吴文斗 《食品科学》 北大核心 2025年第4期268-277,共10页
建立基于轻量化YOLOv8-FasterBlock模型的小粒咖啡生豆分级方法。实验主要收集来自云南的一级、二级、三级以及缺陷小粒咖啡生豆共500 g作为研究对象,混合后采集相应RGB图像作为咖啡生豆分级的数据集。随后对YOLOv8n模型进行改进,重点将... 建立基于轻量化YOLOv8-FasterBlock模型的小粒咖啡生豆分级方法。实验主要收集来自云南的一级、二级、三级以及缺陷小粒咖啡生豆共500 g作为研究对象,混合后采集相应RGB图像作为咖啡生豆分级的数据集。随后对YOLOv8n模型进行改进,重点将YOLOv8n模型中C2f模块的BottleneckBlock替换为FasterNet中的FasterBlock模块,改进后形成新的轻量化YOLOv8-FasterBlock模型。将该模型应用于实验中不同等级咖啡豆分级检测,结果显示,提出的YOLOv8-FasterBlock模型精确率、召回率和平均精度均值分别达到了98.4%、94.3%、97.4%,其检测平均时间为2.4 ms。在后续进行的一系列对比实验、消融实验、轻量化实验以及粘连豆实验,证明了YOLOv8-FasterBlock模型的优越性和结构有效性。YOLOv8-FasterBlock模型在降低模型复杂度的同时,提升了对小粒咖啡生豆的特征提取能力和推理速度,可实现咖啡豆分级快速检测。研究结果可为后续小粒咖啡生豆分级设备的视觉模块部署提供参考,也可以为其他农产品的分级提供理论支持。 展开更多
关键词 小粒咖啡 生豆 yolov8-fasterblock模型 目标检测 分级
在线阅读 下载PDF
YOLOv8改进算法在油茶果分拣中的应用
2
作者 刘姜毅 高自成 +2 位作者 刘怀粤 尹浇钦 罗媛尹 《林业工程学报》 北大核心 2025年第1期120-127,共8页
现有的油茶果分拣系统所依赖的YOLO等算法的目标检测、实例分割在低尺寸及密集型样本中鲁棒性较差,存在机械臂常抓取到枝叶、抓取不牢固、易脱落等问题。大部分系统使用目标识别,无法准确识别油茶果具体轮廓信息,不能对油茶果进行大小... 现有的油茶果分拣系统所依赖的YOLO等算法的目标检测、实例分割在低尺寸及密集型样本中鲁棒性较差,存在机械臂常抓取到枝叶、抓取不牢固、易脱落等问题。大部分系统使用目标识别,无法准确识别油茶果具体轮廓信息,不能对油茶果进行大小分类。针对这一问题,研究提出了YOWNet模型应对油茶果分拣的小目标、高密度识别任务。首先,研究了自动化边缘标注脚本,脚本调用零样本Segment Anything框架对原有已标注的油茶果目标检测框提取兴趣区间,将其自动转化为边缘标注信息;其次,为了提高模型对小目标的识别能力,研究摒弃了现有的固定感受野的卷积模块,针对油茶果特性提出三维注意力动态卷积模块用于捕捉特征图中的关键信息;最后,研究通过使用Wise⁃IoU损失函数,基于动态非单调聚焦机制的边界框损失,提升边框回归精度。总体网络模型命名为YOWNet,通过与YOLOv8在油茶果上的消融实验对比,试验结果表明:YOWNet模型能够快速准确地识别油茶果实例,在私有数据集上,准确度、Box_loss可达89.90%和0.523。 展开更多
关键词 油茶果 三维动态卷积 实例分割 yolov8 Segment Anything model Wise⁃IoU
在线阅读 下载PDF
Improved YOLOv8s Detection Algorithm for Remote Sensing Images
3
作者 Lunming Qin Wenquan Mei +2 位作者 Haoyang Cui Houqin Bian Xi Wang 《Journal of Beijing Institute of Technology》 2025年第3期278-289,共12页
In response to challenges posed by complex backgrounds,diverse target angles,and numerous small targets in remote sensing images,alongside the issue of high resource consumption hindering model deployment,we propose a... In response to challenges posed by complex backgrounds,diverse target angles,and numerous small targets in remote sensing images,alongside the issue of high resource consumption hindering model deployment,we propose an enhanced,lightweight you only look once version 8 small(YOLOv8s)detection algorithm.Regarding network improvements,we first replace tradi-tional horizontal boxes with rotated boxes for target detection,effectively addressing difficulties in feature extraction caused by varying target angles.Second,we design a module integrating convolu-tional neural networks(CNN)and Transformer components to replace specific C2f modules in the backbone network,thereby expanding the model’s receptive field and enhancing feature extraction in complex backgrounds.Finally,we introduce a feature calibration structure to mitigate potential feature mismatches during feature fusion.For model compression,we employ a lightweight channel pruning technique based on localized mean average precision(LMAP)to eliminate redundancies in the enhanced model.Although this approach results in some loss of detection accuracy,it effec-tively reduces the number of parameters,computational load,and model size.Additionally,we employ channel-level knowledge distillation to recover accuracy in the pruned model,further enhancing detection performance.Experimental results indicate that the enhanced algorithm achieves a 6.1%increase in mAP50 compared to YOLOv8s,while simultaneously reducing parame-ters,computational load,and model size by 57.7%,28.8%,and 52.3%,respectively. 展开更多
关键词 yolov8s remote sensing image target detection model pruning knowledge distillation
在线阅读 下载PDF
Dual-Stream Attention-Based Classification Network for Tibial Plateau Fractures via Diffusion Model Augmentation and Segmentation Map Integration
4
作者 Yi Xie Zhi-wei Hao +8 位作者 Xin-meng Wang Hong-lin Wang Jia-ming Yang Hong Zhou Xu-dong Wang Jia-yao Zhang Hui-wen Yang Peng-ran Liu Zhe-wei Ye 《Current Medical Science》 2025年第1期57-69,共13页
Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(... Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(TPFs).Methods YOLOv8n-cls was used to construct a baseline model on the data of 3781 patients from the Orthopedic Trauma Center of Wuhan Union Hospital.Additionally,a segmentation-guided classification approach was proposed.To enhance the dataset,a diffusion model was further demonstrated for data augmentation.Results The novel method that integrated the segmentation-guided classification and diffusion model augmentation sig-nificantly improved the accuracy and robustness of fracture classification.The average accuracy of classification for TPFs rose from 0.844 to 0.896.The comprehensive performance of the dual-stream model was also significantly enhanced after many rounds of training,with both the macro-area under the curve(AUC)and the micro-AUC increasing from 0.94 to 0.97.By utilizing diffusion model augmentation and segmentation map integration,the model demonstrated superior efficacy in identifying SchatzkerⅠ,achieving an accuracy of 0.880.It yielded an accuracy of 0.898 for SchatzkerⅡandⅢand 0.913 for SchatzkerⅣ;for SchatzkerⅤandⅥ,the accuracy was 0.887;and for intercondylar ridge fracture,the accuracy was 0.923.Conclusion The dual-stream attention-based classification network,which has been verified by many experiments,exhibited great potential in predicting the classification of TPFs.This method facilitates automatic TPF assessment and may assist surgeons in the rapid formulation of surgical plans. 展开更多
关键词 Artificial intelligence yolov8 Tibial plateau fracture Diffusion model augmentation Segmentation map
暂未订购
基于Fert-YOLO的高粱育性检测模型研究
5
作者 赵泽阳 段有厚 +4 位作者 卢峰 柯福来 朱凯 杨琳琳 张飞 《山西农业大学学报(自然科学版)》 北大核心 2025年第4期46-56,共11页
[目的]高粱作为重要粮食与能源作物,其育性检测对品种选育与产量提升至关重要。但田间复杂背景干扰导致传统检测效率低下,亟需高效精准的检测技术。[方法]本研究基于YOLOv8n提出了一种针对高粱育性的轻量化检测模型Fert-YOLO。首先,使... [目的]高粱作为重要粮食与能源作物,其育性检测对品种选育与产量提升至关重要。但田间复杂背景干扰导致传统检测效率低下,亟需高效精准的检测技术。[方法]本研究基于YOLOv8n提出了一种针对高粱育性的轻量化检测模型Fert-YOLO。首先,使用多种离线数据增强方法,扩充数据多样性,提升模型的泛化能力。其次,为了减少网络复杂度的同时有效提升网络对高粱育性的检测能力,使用StarNet替换YOLOv8n的骨干特征提取网络;在特征融合部分,对C2F进行重设计,引入混合局部空间注意力(MLCA)机制,增强网络对有效特征的捕捉能力。最后使用轻量化共享卷积(LSCD)检测头,通过共享卷积层参数,大幅削减模型参数数量,降低模型复杂度。[结果]Fert-YOLO模型在高粱育性检测任务中表现卓越。相较原YOLOv8n模型,其平均精度均值(Map_(0.5))提升了1.5%,模型对高粱育性的检测精度进一步提高。模型的浮点运算量(FLOPs)、参数量相较于原模型降低了40.0%和47.8%,显著提升了模型的推理速度和部署效率。与其它常见单阶段轻量级检测模型对比,Fert-YOLO在检测精度与模型轻量化方面均展现出明显优势。[结论]本研究成果为田间条件下高粱育性的高效检测提供了可靠的技术支持,对推动高粱智能化育种和精准农业发展具有重要意义。 展开更多
关键词 高粱 育性检测 yolov8n 模型优化
在线阅读 下载PDF
SAY-SOD:基于大模型优化的高清遥感图像小目标检测框架
6
作者 曾文龙 贾海涛 +1 位作者 周昊哲 程卓尔 《网络安全与数据治理》 2025年第S1期90-97,共8页
随着遥感技术的不断发展,遥感图像中小目标检测面临着背景复杂、目标尺寸小、像素信息少等挑战,传统检测算法在这一领域的表现存在一定局限。提出了一种基于SAM大模型和改进YOLOv8的小目标检测框架。首先,利用SAM对原始遥感图像进行感... 随着遥感技术的不断发展,遥感图像中小目标检测面临着背景复杂、目标尺寸小、像素信息少等挑战,传统检测算法在这一领域的表现存在一定局限。提出了一种基于SAM大模型和改进YOLOv8的小目标检测框架。首先,利用SAM对原始遥感图像进行感兴趣区域的提取和分割,随后对分割后的图像进行多尺度增强,以提高小目标的显著性。增强后的图像与原图的编号和定位信息一起构建数据集,用于训练改进的YOLOv8模型。改进措施包括特征金字塔网络的优化、引入注意力机制、重新设计损失函数。实验结果表明,SAY-SOD框架在复杂背景下有效提升了遥感小目标的检测精度和鲁棒性,尤其在面对不同尺度和背景变化时表现出色。 展开更多
关键词 遥感图像 小目标检测 Segment Anything model yolov8 特征金字塔网络 数据增强 注意力机制
在线阅读 下载PDF
Lightweight Small Defect Detection with YOLOv8 Using Cascaded Multi-Receptive Fields and Enhanced Detection Heads
7
作者 Shengran Zhao Zhensong Li +2 位作者 Xiaotan Wei Yutong Wang Kai Zhao 《Computers, Materials & Continua》 2026年第1期1278-1291,共14页
In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds... In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection. 展开更多
关键词 yolov8n PCB surface defect detection lightweight model small object detection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部