In response to challenges posed by complex backgrounds,diverse target angles,and numerous small targets in remote sensing images,alongside the issue of high resource consumption hindering model deployment,we propose a...In response to challenges posed by complex backgrounds,diverse target angles,and numerous small targets in remote sensing images,alongside the issue of high resource consumption hindering model deployment,we propose an enhanced,lightweight you only look once version 8 small(YOLOv8s)detection algorithm.Regarding network improvements,we first replace tradi-tional horizontal boxes with rotated boxes for target detection,effectively addressing difficulties in feature extraction caused by varying target angles.Second,we design a module integrating convolu-tional neural networks(CNN)and Transformer components to replace specific C2f modules in the backbone network,thereby expanding the model’s receptive field and enhancing feature extraction in complex backgrounds.Finally,we introduce a feature calibration structure to mitigate potential feature mismatches during feature fusion.For model compression,we employ a lightweight channel pruning technique based on localized mean average precision(LMAP)to eliminate redundancies in the enhanced model.Although this approach results in some loss of detection accuracy,it effec-tively reduces the number of parameters,computational load,and model size.Additionally,we employ channel-level knowledge distillation to recover accuracy in the pruned model,further enhancing detection performance.Experimental results indicate that the enhanced algorithm achieves a 6.1%increase in mAP50 compared to YOLOv8s,while simultaneously reducing parame-ters,computational load,and model size by 57.7%,28.8%,and 52.3%,respectively.展开更多
Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(...Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(TPFs).Methods YOLOv8n-cls was used to construct a baseline model on the data of 3781 patients from the Orthopedic Trauma Center of Wuhan Union Hospital.Additionally,a segmentation-guided classification approach was proposed.To enhance the dataset,a diffusion model was further demonstrated for data augmentation.Results The novel method that integrated the segmentation-guided classification and diffusion model augmentation sig-nificantly improved the accuracy and robustness of fracture classification.The average accuracy of classification for TPFs rose from 0.844 to 0.896.The comprehensive performance of the dual-stream model was also significantly enhanced after many rounds of training,with both the macro-area under the curve(AUC)and the micro-AUC increasing from 0.94 to 0.97.By utilizing diffusion model augmentation and segmentation map integration,the model demonstrated superior efficacy in identifying SchatzkerⅠ,achieving an accuracy of 0.880.It yielded an accuracy of 0.898 for SchatzkerⅡandⅢand 0.913 for SchatzkerⅣ;for SchatzkerⅤandⅥ,the accuracy was 0.887;and for intercondylar ridge fracture,the accuracy was 0.923.Conclusion The dual-stream attention-based classification network,which has been verified by many experiments,exhibited great potential in predicting the classification of TPFs.This method facilitates automatic TPF assessment and may assist surgeons in the rapid formulation of surgical plans.展开更多
In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds...In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.展开更多
基金supported in part by the National Natural Foundation of China(Nos.52472334,U2368204)。
文摘In response to challenges posed by complex backgrounds,diverse target angles,and numerous small targets in remote sensing images,alongside the issue of high resource consumption hindering model deployment,we propose an enhanced,lightweight you only look once version 8 small(YOLOv8s)detection algorithm.Regarding network improvements,we first replace tradi-tional horizontal boxes with rotated boxes for target detection,effectively addressing difficulties in feature extraction caused by varying target angles.Second,we design a module integrating convolu-tional neural networks(CNN)and Transformer components to replace specific C2f modules in the backbone network,thereby expanding the model’s receptive field and enhancing feature extraction in complex backgrounds.Finally,we introduce a feature calibration structure to mitigate potential feature mismatches during feature fusion.For model compression,we employ a lightweight channel pruning technique based on localized mean average precision(LMAP)to eliminate redundancies in the enhanced model.Although this approach results in some loss of detection accuracy,it effec-tively reduces the number of parameters,computational load,and model size.Additionally,we employ channel-level knowledge distillation to recover accuracy in the pruned model,further enhancing detection performance.Experimental results indicate that the enhanced algorithm achieves a 6.1%increase in mAP50 compared to YOLOv8s,while simultaneously reducing parame-ters,computational load,and model size by 57.7%,28.8%,and 52.3%,respectively.
基金supported by the National Natural Science Foundation of China(Nos.81974355 and 82172524)Key Research and Development Program of Hubei Province(No.2021BEA161)+2 种基金National Innovation Platform Development Program(No.2020021105012440)Open Project Funding of the Hubei Key Laboratory of Big Data Intelligent Analysis and Application,Hubei University(No.2024BDIAA03)Free Innovation Preliminary Research Fund of Wuhan Union Hospital(No.2024XHYN047).
文摘Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(TPFs).Methods YOLOv8n-cls was used to construct a baseline model on the data of 3781 patients from the Orthopedic Trauma Center of Wuhan Union Hospital.Additionally,a segmentation-guided classification approach was proposed.To enhance the dataset,a diffusion model was further demonstrated for data augmentation.Results The novel method that integrated the segmentation-guided classification and diffusion model augmentation sig-nificantly improved the accuracy and robustness of fracture classification.The average accuracy of classification for TPFs rose from 0.844 to 0.896.The comprehensive performance of the dual-stream model was also significantly enhanced after many rounds of training,with both the macro-area under the curve(AUC)and the micro-AUC increasing from 0.94 to 0.97.By utilizing diffusion model augmentation and segmentation map integration,the model demonstrated superior efficacy in identifying SchatzkerⅠ,achieving an accuracy of 0.880.It yielded an accuracy of 0.898 for SchatzkerⅡandⅢand 0.913 for SchatzkerⅣ;for SchatzkerⅤandⅥ,the accuracy was 0.887;and for intercondylar ridge fracture,the accuracy was 0.923.Conclusion The dual-stream attention-based classification network,which has been verified by many experiments,exhibited great potential in predicting the classification of TPFs.This method facilitates automatic TPF assessment and may assist surgeons in the rapid formulation of surgical plans.
基金funded by the Joint Funds of the National Natural Science Foundation of China(U2341223)the Beijing Municipal Natural Science Foundation(No.4232067).
文摘In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.